當前位置: 首頁>>代碼示例>>Python>>正文


Python models.vgg16方法代碼示例

本文整理匯總了Python中torchvision.models.vgg16方法的典型用法代碼示例。如果您正苦於以下問題:Python models.vgg16方法的具體用法?Python models.vgg16怎麽用?Python models.vgg16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.models的用法示例。


在下文中一共展示了models.vgg16方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_image_format

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def get_image_format(framework_name, model_name):
    """Return the correct input range and shape for target framework and model"""
    special_shape = {'pytorch':{'inception_v3': (299, 299)},
                     'keras': {'xception': (299, 299),
                               'inception_v3':(299, 299),
                               'yolo_v3': (416, 416),
                               'ssd300': (300, 300)}}
    special_bound = {'keras':{'vgg16':(0, 255),
                              'vgg19':(0, 255),
                              'resnet50':(0, 255),
                              'ssd300': (0, 255)},
                     'cloud': {'aip_antiporn': (0, 255),
                               'google_safesearch': (0, 255),
                               'google_objectdetection': (0, 255)}}
    default_shape = (224, 224)
    default_bound = (0, 1)
    if special_shape.get(framework_name, None):
        if special_shape[framework_name].get(model_name, None):
            default_shape = special_shape[framework_name][model_name]
    if special_bound.get(framework_name, None):
        if special_bound[framework_name].get(model_name, None):
            default_bound = special_bound[framework_name][model_name]
    return {'shape': default_shape, 'bounds': default_bound} 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:25,代碼來源:tools.py

示例2: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4):
        super(crop_model_multi_scale_shared, self).__init__()

        if model == 'shufflenetv2':
            self.Feat_ext = shufflenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(812, reddim, kernel_size=1, padding=0)
        elif model == 'mobilenetv2':
            self.Feat_ext = mobilenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(448, reddim, kernel_size=1, padding=0)
        elif model == 'vgg16':
            self.Feat_ext = vgg_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(1536, reddim, kernel_size=1, padding=0)
        elif model == 'resnet50':
            self.Feat_ext = resnet50_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(3584, reddim, kernel_size=1, padding=0)

        self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0)
        self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0)
        self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.FC_layers = fc_layers(reddim*2, alignsize) 
開發者ID:HuiZeng,項目名稱:Grid-Anchor-based-Image-Cropping-Pytorch,代碼行數:23,代碼來源:croppingModel.py

示例3: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self):
        super(DANNet, self).__init__()
        model = models.vgg16(pretrained=True)  #False

        self.features = model.features
        for param in self.features.parameters(): #NOTE: prune:True  // finetune:False
            param.requires_grad = True

        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(25088, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
        )
        self.cls_fc = nn.Linear(4096, 31) 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:19,代碼來源:finetune.py

示例4: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, num_classes):
        super().__init__()

        feats = list(models.vgg16(pretrained=True).features.children())

        self.feats = nn.Sequential(*feats[0:9])
        self.feat3 = nn.Sequential(*feats[10:16])
        self.feat4 = nn.Sequential(*feats[17:23])
        self.feat5 = nn.Sequential(*feats[24:30])

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                m.requires_grad = False

        self.fconn = nn.Sequential(
            nn.Conv2d(512, 4096, 7),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Conv2d(4096, 4096, 1),
            nn.ReLU(inplace=True),
            nn.Dropout(),
        )
        self.score_feat3 = nn.Conv2d(256, num_classes, 1)
        self.score_feat4 = nn.Conv2d(512, num_classes, 1)
        self.score_fconn = nn.Conv2d(4096, num_classes, 1) 
開發者ID:mapleneverfade,項目名稱:pytorch-semantic-segmentation,代碼行數:27,代碼來源:fcn.py

示例5: test_untargeted_vgg16

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def test_untargeted_vgg16(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.vgg16(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:19,代碼來源:test_attack_Gaussian_blur.py

示例6: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4):
        super(crop_model_multi_scale_individual, self).__init__()

        if model == 'shufflenetv2':
            self.Feat_ext1 = shufflenetv2_base(loadweight,downsample)
            self.Feat_ext2 = shufflenetv2_base(loadweight,downsample)
            self.Feat_ext3 = shufflenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(232, reddim, kernel_size=1, padding=0)
        elif model == 'mobilenetv2':
            self.Feat_ext1 = mobilenetv2_base(loadweight,downsample)
            self.Feat_ext2 = mobilenetv2_base(loadweight,downsample)
            self.Feat_ext3 = mobilenetv2_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(96, reddim, kernel_size=1, padding=0)
        elif model == 'vgg16':
            self.Feat_ext1 = vgg_base(loadweight,downsample)
            self.Feat_ext2 = vgg_base(loadweight,downsample)
            self.Feat_ext3 = vgg_base(loadweight,downsample)
            self.DimRed = nn.Conv2d(512, reddim, kernel_size=1, padding=0)

        self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0)
        self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0)
        self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample)
        self.FC_layers = fc_layers(reddim*2, alignsize) 
開發者ID:lld533,項目名稱:Grid-Anchor-based-Image-Cropping-Pytorch,代碼行數:26,代碼來源:croppingModel.py

示例7: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, opt, pretrained=True):
    super(vgg16, self).__init__()

    self.model_path = '%s/imagenet_weights/vgg16_caffe.pth' %(opt.data_path)
    self.pretrained = pretrained

    vgg = models.vgg16()
    vgg.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1])
    self.fc = vgg.classifier
    self.pooling = nn.AdaptiveAvgPool2d((7,7))
    if self.pretrained:
        print("Loading pretrained weights from %s" %(self.model_path))
        state_dict = torch.load(self.model_path)
        vgg.load_state_dict({k:v for k,v in state_dict.items() if k in vgg.state_dict()})

    # not using the last maxpool layer
    self.cnn_net = nn.Sequential(*list(vgg.features._modules.values())[:-1]) 
開發者ID:jiasenlu,項目名稱:NeuralBabyTalk,代碼行數:19,代碼來源:vgg16.py

示例8: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, num_classes):
        super(FCN16, self).__init__()

        feats = list(models.vgg16(pretrained=True).features.children())
        self.feats = nn.Sequential(*feats[0:17])
        self.pool4 = nn.Sequential(*feats[17:24])
        self.pool5 = nn.Sequential(*feats[24:])

        self.fconn = nn.Sequential(nn.Conv2d(512, 4096, 7, padding=3),
                                   nn.ReLU(inplace=True),
                                   nn.Conv2d(4096, 4096, 1),
                                   nn.ReLU(inplace=True),
                                   nn.Conv2d(4096, num_classes, 1)
                                   )
        self.score_pool4 = nn.Conv2d(512, num_classes, 1)
        self.activation = nn.Sigmoid() 
開發者ID:saeedizadi,項目名稱:binseg_pytoch,代碼行數:18,代碼來源:fcn.py

示例9: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, num_classes):
        super(SegNet, self).__init__()

        modules= list(models.vgg16(pretrained=True).features.children())

        self.conv1 = nn.Sequential(*modules[0:4])
        self.conv2 = nn.Sequential(*modules[5:9])
        self.conv3 = nn.Sequential(*modules[10:16])
        self.conv4 = nn.Sequential(*modules[17:23])
        self.conv5 = nn.Sequential(*modules[24:30])

        self.dec512 = DecodeBlock(512,512,3,1,num_layers=3)
        self.dec256 = DecodeBlock(512, 256, 3, 1, num_layers=3)
        self.dec128 = DecodeBlock(256, 128, 3, 1, num_layers=3)
        self.dec64 = DecodeBlock(128, 64, 3, 1, num_layers=2)

        self.final = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
                                   nn.Conv2d(64, 1, kernel_size=3, padding=1))


        self.activation = nn.Sigmoid()

        initialize_weights(self.dec512,self.dec256,self.dec128,self.dec64, self.final) 
開發者ID:saeedizadi,項目名稱:binseg_pytoch,代碼行數:25,代碼來源:segnet.py

示例10: vgg16_sp

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def vgg16_sp(num_classes, pretrained=True, num_maps=1024):
    model = models.vgg16(pretrained=False)
    if pretrained:
        model_path = 'models/VGG16_ImageNet.pt'
        if os.path.isfile(model_path):
            state_dict = torch.load(model_path)
            model.load_state_dict(state_dict)
        else:
            print('Please download the pretrained VGG16 into ./models')

    num_features = model.features[28].out_channels
    pooling = nn.Sequential()
    pooling.add_module('adconv', nn.Conv2d(num_features, num_maps, kernel_size=3, stride=1, padding=1, groups=2, bias=True))
    pooling.add_module('maps', nn.ReLU())
    pooling.add_module('sp', SoftProposal())
    pooling.add_module('sum', SpatialSumOverMap())
    return SPNetWSL(model, num_classes, num_maps, pooling) 
開發者ID:yeezhu,項目名稱:SPN.pytorch,代碼行數:19,代碼來源:models.py

示例11: decom_vgg16

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def decom_vgg16():
    # the 30th layer of features is relu of conv5_3
    if opt.caffe_pretrain:
        model = vgg16(pretrained=False)
        if not opt.load_path:
            model.load_state_dict(t.load(opt.caffe_pretrain_path))
    else:
        model = vgg16(not opt.load_path)

    features = list(model.features)[:30]
    classifier = model.classifier

    classifier = list(classifier)
    del classifier[6]
    if not opt.use_drop:
        del classifier[5]
        del classifier[2]
    classifier = nn.Sequential(*classifier)

    # freeze top4 conv
    for layer in features[:10]:
        for p in layer.parameters():
            p.requires_grad = False

    return nn.Sequential(*features), classifier 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:27,代碼來源:faster_rcnn_vgg16.py

示例12: getNetwork

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'inception'):
        net = models.inception(pretrained=args.finetune)
        file_name = 'inceptino-v3'
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)
        file_name = 'resnet-%s' %(args.depth)
    else:
        print('Error : Network should be either [VGGNet / ResNet]')
        sys.exit(1)

    return net, file_name 
開發者ID:meliketoy,項目名稱:fine-tuning.pytorch,代碼行數:21,代碼來源:inference.py

示例13: select

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def select(self, model_name=None):
        """select models to be run"""
        logging.info("Run details")
        logging.info("=" * 71)
        models = [
            self.alexnet,
            self.resnet18,
            self.resnet50,
            self.vgg16,
            self.squeezenet,
        ]
        if model_name:
            self.models = [
                model for model in models for name in model_name if name == model.name
            ]
        logging.info("Selected model(s) :: ")
        for m in self.models:
            logging.info("%s ------------- Batchsize :: %s " % (m.name, m.batch))
        logging.info("=" * 71) 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:21,代碼來源:cnn_benchmarks.py

示例14: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def __init__(self, requires_grad=False):
        super(Vgg16, self).__init__()
        vgg_pretrained_features = models.vgg16(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
開發者ID:pytorch,項目名稱:examples,代碼行數:20,代碼來源:vgg.py

示例15: main

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import vgg16 [as 別名]
def main():
  # model = models.vgg19_bn(pretrained=True)
  # _, summary = weight_watcher.analyze(model, alphas=False)
  # for key, value in summary.items():
  #   print('{:10s} : {:}'.format(key, value))

  _, summary = weight_watcher.analyze(models.vgg13(pretrained=True), alphas=False)
  print('vgg-13 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg13_bn(pretrained=True), alphas=False)
  print('vgg-13-BN : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg16(pretrained=True), alphas=False)
  print('vgg-16 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg16_bn(pretrained=True), alphas=False)
  print('vgg-16-BN : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg19(pretrained=True), alphas=False)
  print('vgg-19 : {:}'.format(summary['lognorm']))
  _, summary = weight_watcher.analyze(models.vgg19_bn(pretrained=True), alphas=False)
  print('vgg-19-BN : {:}'.format(summary['lognorm'])) 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:20,代碼來源:test-ww.py


注:本文中的torchvision.models.vgg16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。