當前位置: 首頁>>代碼示例>>Python>>正文


Python models.squeezenet1_1方法代碼示例

本文整理匯總了Python中torchvision.models.squeezenet1_1方法的典型用法代碼示例。如果您正苦於以下問題:Python models.squeezenet1_1方法的具體用法?Python models.squeezenet1_1怎麽用?Python models.squeezenet1_1使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.models的用法示例。


在下文中一共展示了models.squeezenet1_1方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_untargeted_squeezenet1_1

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def test_untargeted_squeezenet1_1(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.squeezenet1_1(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:19,代碼來源:test_attack_Gaussian_blur.py

示例2: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, images, model_key, layer, batch_size=256):
        super().__init__(images, batch_size)
        self.models = {
            "alexnet": models.alexnet,
            "squeezenet": models.squeezenet1_1,
            "googlenet": models.googlenet
        }
        self.preprocessors = {
            "alexnet": self.__preprocess_alexnet,
            "squeezenet": self.__preprocess_squeezenet,
            "googlenet": self.__preprocess_googlenet
        }
        self.batch_size = batch_size
        self.layer = layer
        self.model_key = model_key

        self.model, self.feature_layer, self.output_size = self.__build_model(
            layer) 
開發者ID:DeepSpectrum,項目名稱:DeepSpectrum,代碼行數:20,代碼來源:extractor.py

示例3: squeezenet1_1

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def squeezenet1_1(num_classes=1000, pretrained='imagenet'):
    r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
    <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
    SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
    than SqueezeNet 1.0, without sacrificing accuracy.
    """
    model = models.squeezenet1_1(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['squeezenet1_1'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_squeezenets(model)
    return model

###############################################################
# VGGs 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:17,代碼來源:torchvision_models.py

示例4: _load_pytorch_model

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:41,代碼來源:tools.py

示例5: load_pytorch_model

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:30,代碼來源:tools.py

示例6: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self):
        super(SqueezeNetExtractor, self).__init__()
        model = squeezenet1_1(pretrained=True)
        features = model.features
        self.feature1 = features[:2]
        self.feature2 = features[2:5]
        self.feature3 = features[5:8]
        self.feature4 = features[8:] 
開發者ID:YBIGTA,項目名稱:pytorch-hair-segmentation,代碼行數:10,代碼來源:pspnet.py

示例7: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, pretrained=True):

        super(FeatExtractorSqueezeNetx16, self).__init__()
        print("loading layers from squeezenet1_1...")
        sq = models.squeezenet1_1(pretrained=pretrained)

        self.conv1 = nn.Sequential(
            sq.features[0],
            sq.features[1],
        )
        self.conv2 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            sq.features[3],
            sq.features[4],
        )
        self.conv3 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            sq.features[6],
            sq.features[7],
        )
        self.conv4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            sq.features[9],
            sq.features[10],
            sq.features[11],
            sq.features[12],
        )

        self.conv1[0].padding = (1, 1) 
開發者ID:longcw,項目名稱:MOTDT,代碼行數:31,代碼來源:sqeezenet.py

示例8: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, requires_grad=False, pretrained=True):
        super(squeezenet, self).__init__()
        pretrained_features = models.squeezenet1_1(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        self.slice7 = torch.nn.Sequential()
        self.N_slices = 7
        for x in range(2):
            self.slice1.add_module(str(x), pretrained_features[x])
        for x in range(2,5):
            self.slice2.add_module(str(x), pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), pretrained_features[x])
        for x in range(10, 11):
            self.slice5.add_module(str(x), pretrained_features[x])
        for x in range(11, 12):
            self.slice6.add_module(str(x), pretrained_features[x])
        for x in range(12, 13):
            self.slice7.add_module(str(x), pretrained_features[x])


        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
開發者ID:rakshithShetty,項目名稱:adversarial-object-removal,代碼行數:32,代碼來源:models.py

示例9: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, requires_grad=False, pretrained=True):
        super(squeezenet, self).__init__()
        pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        self.slice7 = torch.nn.Sequential()
        self.N_slices = 7
        for x in range(2):
            self.slice1.add_module(str(x), pretrained_features[x])
        for x in range(2,5):
            self.slice2.add_module(str(x), pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), pretrained_features[x])
        for x in range(10, 11):
            self.slice5.add_module(str(x), pretrained_features[x])
        for x in range(11, 12):
            self.slice6.add_module(str(x), pretrained_features[x])
        for x in range(12, 13):
            self.slice7.add_module(str(x), pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
開發者ID:richzhang,項目名稱:PerceptualSimilarity,代碼行數:30,代碼來源:pretrained_networks.py

示例10: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, requires_grad=False, pretrained=True):
        super(squeezenet, self).__init__()
        pretrained_features = models.squeezenet1_1(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        self.slice7 = torch.nn.Sequential()
        self.N_slices = 7
        for x in range(2):
            self.slice1.add_module(str(x), pretrained_features[x])
        for x in range(2,5):
            self.slice2.add_module(str(x), pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), pretrained_features[x])
        for x in range(10, 11):
            self.slice5.add_module(str(x), pretrained_features[x])
        for x in range(11, 12):
            self.slice6.add_module(str(x), pretrained_features[x])
        for x in range(12, 13):
            self.slice7.add_module(str(x), pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
開發者ID:thunil,項目名稱:TecoGAN,代碼行數:30,代碼來源:pretrained_networks.py

示例11: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def __init__(self, requires_grad=False, pretrained=True):
        super(squeezenet, self).__init__()
        pretrained_features = models.squeezenet1_1(
            pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        self.slice7 = torch.nn.Sequential()
        self.N_slices = 7
        for x in range(2):
            self.slice1.add_module(str(x), pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), pretrained_features[x])
        for x in range(10, 11):
            self.slice5.add_module(str(x), pretrained_features[x])
        for x in range(11, 12):
            self.slice6.add_module(str(x), pretrained_features[x])
        for x in range(12, 13):
            self.slice7.add_module(str(x), pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
開發者ID:BCV-Uniandes,項目名稱:SMIT,代碼行數:31,代碼來源:pretrained_networks.py

示例12: squeezenet_qc

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def squeezenet_qc(pretrained=False, **kwargs):
    """Constructs a SqueezeNet 1.1 model

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = SqueezeNetQC(version=1.1, **kwargs)
    if pretrained:
        # load basic Resnet model
        model_ft = models.squeezenet1_1(pretrained=True)
        model.load_from_std(model_ft)
    return model 
開發者ID:aramis-lab,項目名稱:AD-DL,代碼行數:14,代碼來源:squezenet_qc.py

示例13: _init_modules

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def _init_modules(self):
    if self.version == '1_0':
        squeezenet = models.squeezenet1_0()
        self.clip = -2
    elif self.version == '1_1':
        squeezenet = models.squeezenet1_1()
        self.clip = -5
    if self.pretrained:
        print("Loading pretrained weights from %s" %(self.model_path))
        if torch.cuda.is_available():
          state_dict = torch.load(self.model_path)
        else:
          state_dict = torch.load(self.model_path, map_location=lambda storage, loc: storage)
        squeezenet.load_state_dict({k:v for k,v in state_dict.items() if k in squeezenet.state_dict()})

    squeezenet.classifier = nn.Sequential(*list(squeezenet.classifier._modules.values())[:-1])

    # not using the last maxpool layer
    if self.lighthead:
      self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values())[:self.clip])
    else:
      self.RCNN_base = nn.Sequential(*list(squeezenet.features._modules.values()))

    # Fix Layers
    for layer in range(len(self.RCNN_base)):
      for p in self.RCNN_base[layer].parameters(): p.requires_grad = False

    # self.RCNN_base = _RCNN_base(vgg.features, self.classes, self.dout_base_model)
    if self.lighthead:
      self.lighthead_base = nn.Sequential(*list(squeezenet.features._modules.values())[self.clip+1:])
      self.RCNN_top = nn.Sequential(nn.Linear(490 * 7 * 7, 2048), nn.ReLU(inplace=True))
    else:
      self.RCNN_top = squeezenet.classifier

    d_in = 2048 if self.lighthead else 512

    # not using the last maxpool layer
    self.RCNN_cls_score = nn.Linear(d_in, self.n_classes)

    if self.class_agnostic:
      self.RCNN_bbox_pred = nn.Linear(d_in, 4)
    else:
      self.RCNN_bbox_pred = nn.Linear(d_in, 4 * self.n_classes) 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:45,代碼來源:squeezenet.py

示例14: squeezenet1_1

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import squeezenet1_1 [as 別名]
def squeezenet1_1(num_classes=1000, pretrained='imagenet'):
    r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
    <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
    SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
    than SqueezeNet 1.0, without sacrificing accuracy.
    """
    model = models.squeezenet1_1(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['squeezenet1_1'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_squeezenets(model)
    return model

###############################################################
# VGGs

#def modify_vggs(model):
#    # Modify attributs
#    model._features = model.features
#    del model.features
#    model.linear0 = model.classifier[0]
#    model.relu0 = model.classifier[1]
#    model.dropout0 = model.classifier[2]
#    model.linear1 = model.classifier[3]
#    model.relu1 = model.classifier[4]
#    model.dropout1 = model.classifier[5]
#    model.last_linear = model.classifier[6]
#    del model.classifier
#
#    def features(self, input):
#        x = self._features(input)
#        x = x.view(x.size(0), -1)
#        x = self.linear0(x)
#        x = self.relu0(x)
#        x = self.dropout0(x) 
#        x = self.linear1(x)
#        return x
#
#    def logits(self, features):
#        x = self.relu1(features)
#        x = self.dropout1(x)
#        x = self.last_linear(x)
#        return x
#
#    def forward(self, input):
#        x = self.features(input)
#        x = self.logits(x)
#        return x
        
#    # Modify methods
#    setattr(model.__class__, 'features', features)
#    setattr(model.__class__, 'logits', logits)
#    setattr(model.__class__, 'forward', forward)  
#    return model 
開發者ID:CeLuigi,項目名稱:models-comparison.pytorch,代碼行數:56,代碼來源:torchvision_models.py


注:本文中的torchvision.models.squeezenet1_1方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。