當前位置: 首頁>>代碼示例>>Python>>正文


Python models.resnet18方法代碼示例

本文整理匯總了Python中torchvision.models.resnet18方法的典型用法代碼示例。如果您正苦於以下問題:Python models.resnet18方法的具體用法?Python models.resnet18怎麽用?Python models.resnet18使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.models的用法示例。


在下文中一共展示了models.resnet18方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self,option = 'resnet18',pret=True):
        super(ResBase, self).__init__()
        self.dim = 2048
        if option == 'resnet18':
            model_ft = models.resnet18(pretrained=pret)
            self.dim = 512
        if option == 'resnet50':
            model_ft = models.resnet50(pretrained=pret)
        if option == 'resnet101':
            model_ft = models.resnet101(pretrained=pret)
        if option == 'resnet152':
            model_ft = models.resnet152(pretrained=pret)
        if option == 'resnet200':
            model_ft = Res200()
        if option == 'resnetnext':
            model_ft = ResNeXt(layer_num=101)
        mod = list(model_ft.children())
        mod.pop()
        #self.model_ft =model_ft
        self.features = nn.Sequential(*mod) 
開發者ID:mil-tokyo,項目名稱:MCD_DA,代碼行數:22,代碼來源:basenet.py

示例2: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, args):
        super(ResNet18Image2IMUOneTower, self).__init__()
        assert args.sequence_length == 1, "ResNet18Image2IMU supports seq-len=1"

        self.class_weights = args.dataset.CLASS_WEIGHTS[torch.LongTensor(
            args.imus)]

        resnet_model = torchvision_resnet18(pretrained=args.pretrain)
        # Remove the last fully connected layer.
        del resnet_model.fc
        self.resnet = resnet_model

        self.resnet.conv1 = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2),
                                      padding=(3, 3), bias=False)

        num_features = 512
        num_frames = 1
        num_classes = args.num_classes
        # Make num_imu fc layers
        self.imus = args.imus
        for i in self.imus:
            setattr(self, 'imu{}'.format(i),
                    nn.Linear(num_frames * num_features, num_classes))
        self.dropout = nn.Dropout() 
開發者ID:ehsanik,項目名稱:dogTorch,代碼行數:26,代碼來源:resnet_one_tower_baseline.py

示例3: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, args):
        super(ResNet18Image2IMURegress, self).__init__()
        assert args.sequence_length == 1, "ResNet18Image2IMURegress supports seq-len=1"
        assert args.regression, "--regression must be true"

        self.class_weights = args.dataset.CLASS_WEIGHTS[torch.LongTensor(
            args.imus)]

        resnet_model = torchvision_resnet18(pretrained=args.pretrain)
        # Remove the last fully connected layer.
        del resnet_model.fc
        self.resnet = resnet_model

        num_features = 512
        num_frames = 2
        num_output = 4
        # Make num_imu fc layers
        self.imus = args.imus
        for i in self.imus:
            setattr(self, 'imu{}'.format(i),
                    nn.Linear(num_frames * num_features, num_output)) 
開發者ID:ehsanik,項目名稱:dogTorch,代碼行數:23,代碼來源:resnet18_image2imu_regress.py

示例4: tl_fine_tuning

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def tl_fine_tuning(epochs=3):
    # load the pre-trained model
    model = models.resnet18(pretrained=True)

    # replace the last layer
    num_features = model.fc.in_features
    model.fc = nn.Linear(num_features, 10)

    # transfer the model to the GPU
    model = model.to(device)

    # loss function
    loss_function = nn.CrossEntropyLoss()

    # We'll optimize all parameters
    optimizer = optim.Adam(model.parameters())

    # train
    for epoch in range(epochs):
        print('Epoch {}/{}'.format(epoch + 1, epochs))

        train_model(model, loss_function, optimizer, train_loader)
        test_model(model, loss_function, val_order) 
開發者ID:ivan-vasilev,項目名稱:Python-Deep-Learning-SE,代碼行數:25,代碼來源:chapter_05_001.py

示例5: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, original_model, arch, num_classes):
        super(FineTuneModel, self).__init__()

        if arch.startswith('alexnet') or arch.startswith('vgg'):
            self.features = original_model.features
            self.fc = nn.Sequential(*list(original_model.classifier.children())[:-1])
            self.classifier = nn.Sequential(
                nn.Linear(4096, num_classes)
            )
        elif arch.startswith('resnet') or arch.startswith('resnext'):
            # Everything except the last linear layer
            self.features = nn.Sequential(*list(original_model.children())[:-1])
            if arch == 'resnet18':
                self.classifier = nn.Sequential(
                    nn.Linear(512, num_classes)
                )
            else:
                self.classifier = nn.Sequential(
                    nn.Linear(2048, num_classes)
                )
        else:
            raise ("Finetuning not supported on this architecture yet. Feel free to add")

        self.unfreeze(False)  # Freeze weights except last layer 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:26,代碼來源:test.py

示例6: load_net_param

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def load_net_param(self):
        from torchvision.models import resnet18
        resnet = resnet18(pretrained=True)

        self.enc1_conv1.load_state_dict(resnet.conv1.state_dict())
        self.enc1_bn1.load_state_dict(resnet.bn1.state_dict())
        self.enc1_res1_1.load_state_dict(list(resnet.layer1.children())[0].state_dict())
        self.enc1_res1_2.load_state_dict(list(resnet.layer1.children())[1].state_dict())
        self.enc1_res2_1.load_state_dict(list(resnet.layer2.children())[0].state_dict())
        self.enc1_res2_2.load_state_dict(list(resnet.layer2.children())[1].state_dict())
        self.enc1_res3_1.load_state_dict(list(resnet.layer3.children())[0].state_dict())
        self.enc1_res3_2.load_state_dict(list(resnet.layer3.children())[1].state_dict())
        self.enc1_res4_1.load_state_dict(list(resnet.layer4.children())[0].state_dict())
        self.enc1_res4_2.load_state_dict(list(resnet.layer4.children())[1].state_dict())

        self.enc2_conv1.load_state_dict(resnet.conv1.state_dict())
        self.enc2_bn1.load_state_dict(resnet.bn1.state_dict())
        self.enc2_res1_1.load_state_dict(list(resnet.layer1.children())[0].state_dict())
        self.enc2_res1_2.load_state_dict(list(resnet.layer1.children())[1].state_dict())
        self.enc2_res2_1.load_state_dict(list(resnet.layer2.children())[0].state_dict())
        self.enc2_res2_2.load_state_dict(list(resnet.layer2.children())[1].state_dict())
        self.enc2_res3_1.load_state_dict(list(resnet.layer3.children())[0].state_dict())
        self.enc2_res3_2.load_state_dict(list(resnet.layer3.children())[1].state_dict())
        self.enc2_res4_1.load_state_dict(list(resnet.layer4.children())[0].state_dict())
        self.enc2_res4_2.load_state_dict(list(resnet.layer4.children())[1].state_dict()) 
開發者ID:xdspacelab,項目名稱:sscdnet,代碼行數:27,代碼來源:cscdnet.py

示例7: test_untargeted_resnet18

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def test_untargeted_resnet18(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.resnet18(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:19,代碼來源:test_attack_Gaussian_blur.py

示例8: gcn_embed

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def gcn_embed(self, state):
        x = self.resnet18[0](state)
        x = x.view(x.size(0), -1)
        x = torch.sigmoid(self.resnet18[1](x))
        class_embed = self.get_class_embed(x)
        word_embed = self.get_word_embed(self.all_glove.detach())
        x = torch.cat((class_embed.repeat(self.n, 1), word_embed), dim=1)
        x = torch.mm(self.A, x)
        x = F.relu(self.W0(x))
        x = torch.mm(self.A, x)
        x = F.relu(self.W1(x))
        x = torch.mm(self.A, x)
        x = F.relu(self.W2(x))
        x = x.view(1, self.n)
        x = self.final_mapping(x)
        return x 
開發者ID:allenai,項目名稱:savn,代碼行數:18,代碼來源:gcn.py

示例9: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
開發者ID:TRI-ML,項目名稱:packnet-sfm,代碼行數:23,代碼來源:resnet_encoder.py

示例10: resnet18_ids

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def resnet18_ids(num_attributes, ids_embedding_size, pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    classifier = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
    classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
    if pretrained:
        state_dict = model_zoo.load_url(model_urls['resnet18'])
        model.load_state_dict(
            {k: v for k, v in state_dict.items() if k in model.state_dict()}
        )

    return model, classifier, classifier_ids 
開發者ID:leokarlin,項目名稱:LaSO,代碼行數:18,代碼來源:resnet.py

示例11: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, num_layers):
        super(ResNet_BasicBlock_OS16, self).__init__()

        if num_layers == 18:
            resnet = models.resnet18()
            # load pretrained model:
            resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet18-5c106cde.pth"))
            # remove fully connected layer, avg pool and layer5:
            self.resnet = nn.Sequential(*list(resnet.children())[:-3])

            num_blocks = 2
            print ("pretrained resnet, 18")
        elif num_layers == 34:
            resnet = models.resnet34()
            # load pretrained model:
            resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet34-333f7ec4.pth"))
            # remove fully connected layer, avg pool and layer5:
            self.resnet = nn.Sequential(*list(resnet.children())[:-3])

            num_blocks = 3
            print ("pretrained resnet, 34")
        else:
            raise Exception("num_layers must be in {18, 34}!")

        self.layer5 = make_layer(BasicBlock, in_channels=256, channels=512, num_blocks=num_blocks, stride=1, dilation=2) 
開發者ID:fregu856,項目名稱:deeplabv3,代碼行數:27,代碼來源:resnet.py

示例12: select

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def select(self, model_name=None):
        """select models to be run"""
        logging.info("Run details")
        logging.info("=" * 71)
        models = [
            self.alexnet,
            self.resnet18,
            self.resnet50,
            self.vgg16,
            self.squeezenet,
        ]
        if model_name:
            self.models = [
                model for model in models for name in model_name if name == model.name
            ]
        logging.info("Selected model(s) :: ")
        for m in self.models:
            logging.info("%s ------------- Batchsize :: %s " % (m.name, m.batch))
        logging.info("=" * 71) 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:21,代碼來源:cnn_benchmarks.py

示例13: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, c_dim=128, normalize=True, use_linear=True):
        ''' Initialisation.

        Args:
            c_dim (int): output dimension of the latent embedding
            normalize (bool): whether the input images should be normalized
            use_linear (bool): whether a final linear layer should be used
        '''
        super().__init__()
        self.normalize = normalize
        self.use_linear = use_linear
        self.features = models.resnet18(pretrained=True)
        self.features.fc = nn.Sequential()
        if use_linear:
            self.fc = nn.Linear(512, c_dim)
        elif c_dim == 512:
            self.fc = nn.Sequential()
        else:
            raise ValueError('c_dim must be 512 if use_linear is False') 
開發者ID:autonomousvision,項目名稱:texture_fields,代碼行數:21,代碼來源:encoder.py

示例14: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, c_dim=128, normalize=True, use_linear=True):
        ''' Initialization.

        Args:
            c_dim (int): output dimension of the latent embedding
            normalize (bool): whether the input images should be normalized
            use_linear (bool): whether a final linear layer should be used
        '''
        super().__init__()
        self.normalize = normalize
        self.use_linear = use_linear
        self.features = models.resnet18(pretrained=True)
        self.features.fc = nn.Sequential()
        if use_linear:
            self.fc = nn.Linear(512, c_dim)
        elif c_dim == 512:
            self.fc = nn.Sequential()
        else:
            raise ValueError('c_dim must be 512 if use_linear is False') 
開發者ID:autonomousvision,項目名稱:texture_fields,代碼行數:21,代碼來源:image_encoder.py

示例15: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet18 [as 別名]
def __init__(self, encoder, num_classes):
        super(SegNet, self).__init__()
        self.resnet = encoder
        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv1 = nn.Conv2d(2048, 1024, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(2048, 512, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(1024, 256, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(512, 64, kernel_size=3, stride=1, padding=1)
        self.conv5 = nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1)
        # resnet18
#        self.conv1 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1)
#        self.conv2 = nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1)
#        self.conv3 = nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1)
#        self.conv4 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
#        self.conv5 = nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid() 
開發者ID:zouchuhang,項目名稱:Silhouette-Guided-3D,代碼行數:19,代碼來源:model_sc.py


注:本文中的torchvision.models.resnet18方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。