當前位置: 首頁>>代碼示例>>Python>>正文


Python models.resnet152方法代碼示例

本文整理匯總了Python中torchvision.models.resnet152方法的典型用法代碼示例。如果您正苦於以下問題:Python models.resnet152方法的具體用法?Python models.resnet152怎麽用?Python models.resnet152使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.models的用法示例。


在下文中一共展示了models.resnet152方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_pretrained_resnet

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def get_pretrained_resnet(new_fc_dim=None):
    """
    Fetches a pretrained resnet model (downloading if necessary) and chops off the top linear
    layer. If new_fc_dim isn't None, then a new linear layer is added.
    :param new_fc_dim: 
    :return: 
    """
    resnet152 = models.resnet152(pretrained=True)
    del resnet152.fc

    if new_fc_dim is not None:
        resnet152.fc = nn.Linear(ENCODING_SIZE, new_fc_dim)

        _init_fc(resnet152.fc)
    else:
        resnet152.fc = lambda x: x

    return resnet152 
開發者ID:uwnlp,項目名稱:verb-attributes,代碼行數:20,代碼來源:imsitu_model.py

示例2: test_untargeted_resnet152

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def test_untargeted_resnet152(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.resnet152(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:19,代碼來源:test_attack_Gaussian_blur.py

示例3: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
開發者ID:TRI-ML,項目名稱:packnet-sfm,代碼行數:23,代碼來源:resnet_encoder.py

示例4: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self,option = 'resnet18',pret=True):
        super(ResBase, self).__init__()
        self.dim = 2048
        if option == 'resnet18':
            model_ft = models.resnet18(pretrained=pret)
            self.dim = 512
        if option == 'resnet50':
            model_ft = models.resnet50(pretrained=pret)
        if option == 'resnet101':
            model_ft = models.resnet101(pretrained=pret)
        if option == 'resnet152':
            model_ft = models.resnet152(pretrained=pret)
        if option == 'resnet200':
            model_ft = Res200()
        if option == 'resnetnext':
            model_ft = ResNeXt(layer_num=101)
        mod = list(model_ft.children())
        mod.pop()
        #self.model_ft =model_ft
        self.features = nn.Sequential(*mod) 
開發者ID:mil-tokyo,項目名稱:MCD_DA,代碼行數:22,代碼來源:basenet.py

示例5: get_model

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def get_model(args):
    assert args.type in ['2d', '3d']
    if args.type == '2d':
        print('Loading 2D-ResNet-152 ...')
        model = models.resnet152(pretrained=True)
        model = nn.Sequential(*list(model.children())[:-2], GlobalAvgPool())
        model = model.cuda()
    else:
        print('Loading 3D-ResneXt-101 ...')
        model = resnext.resnet101(
            num_classes=400,
            shortcut_type='B',
            cardinality=32,
            sample_size=112,
            sample_duration=16,
            last_fc=False)
        model = model.cuda()
        model_data = th.load(args.resnext101_model_path)
        model.load_state_dict(model_data)

    model.eval()
    print('loaded')
    return model 
開發者ID:antoine77340,項目名稱:video_feature_extractor,代碼行數:25,代碼來源:model.py

示例6: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if(num==18):
            self.net = tv.resnet18(pretrained=pretrained)
        elif(num==34):
            self.net = tv.resnet34(pretrained=pretrained)
        elif(num==50):
            self.net = tv.resnet50(pretrained=pretrained)
        elif(num==101):
            self.net = tv.resnet101(pretrained=pretrained)
        elif(num==152):
            self.net = tv.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
開發者ID:richzhang,項目名稱:PerceptualSimilarity,代碼行數:24,代碼來源:pretrained_networks.py

示例7: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if(num==18):
            self.net = models.resnet18(pretrained=pretrained)
        elif(num==34):
            self.net = models.resnet34(pretrained=pretrained)
        elif(num==50):
            self.net = models.resnet50(pretrained=pretrained)
        elif(num==101):
            self.net = models.resnet101(pretrained=pretrained)
        elif(num==152):
            self.net = models.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
開發者ID:thunil,項目名稱:TecoGAN,代碼行數:24,代碼來源:pretrained_networks.py

示例8: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if (num == 18):
            self.net = models.resnet18(pretrained=pretrained)
        elif (num == 34):
            self.net = models.resnet34(pretrained=pretrained)
        elif (num == 50):
            self.net = models.resnet50(pretrained=pretrained)
        elif (num == 101):
            self.net = models.resnet101(pretrained=pretrained)
        elif (num == 152):
            self.net = models.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
開發者ID:BCV-Uniandes,項目名稱:SMIT,代碼行數:24,代碼來源:pretrained_networks.py

示例9: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, layers, atrous, pretrained=True):
		super(ResNet, self).__init__()
		self.inner_layer = []
		if layers == 18:
			self.backbone = models.resnet18(pretrained=pretrained)
		elif layers == 34:
			self.backbone = models.resnet34(pretrained=pretrained)
		elif layers == 50:
			self.backbone = models.resnet50(pretrained=pretrained)
		elif layers == 101:
			self.backbone = models.resnet101(pretrained=pretrained)
		elif layers == 152:
			self.backbone = models.resnet152(pretrained=pretrained)
		else:
			raise ValueError('resnet.py: network layers is no support yet')
		
		def hook_func(module, input, output):
			self.inner_layer.append(output)

		self.backbone.layer1.register_forward_hook(hook_func)	
		self.backbone.layer2.register_forward_hook(hook_func)
		self.backbone.layer3.register_forward_hook(hook_func)
		self.backbone.layer4.register_forward_hook(hook_func) 
開發者ID:YudeWang,項目名稱:deeplabv3plus-pytorch,代碼行數:25,代碼來源:resnet.py

示例10: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self):
        super(ResNet152_bo,self).__init__()

        # 設置網絡名稱,保存模型時命名使用
        self.moduel_name=str("ResNet152_bo")
        # 加載預訓練好的網絡權重
        model = resnet152(pretrained=True)

        # 固定權重   nn.Module有成員函數parameters()
        if opt.fixed_weight:
            for param in model.parameters():
                param.requires_grad = False
        # 結論:self.model_bo隻有修改過的新層(即最後兩層全連接層)的值為True
        # 替換最後一層全連接層
        # 新層默認requires_grad=True
        # resnet152中有self.fc,作為前向過程的最後一層
        # (修改輸入圖像大小,可通過報錯信息來調整下麵參數)
        model.fc = nn.Linear(2048, 2)   #420:131072    224:2048
        # 此時self.model_bo的權重為預訓練權重,修改的新層(全連接層)權重為自動初始化的
        self.model_bo=model
        #手動初始化fc層
        self._initialize_weights() 
開發者ID:bobo0810,項目名稱:XueLangTianchi,代碼行數:24,代碼來源:ResNet.py

示例11: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, args, pretrained=True, weldon_pretrained_path=None):
        super(ResNet_weldon, self).__init__()

        resnet = models.resnet152(pretrained=pretrained)

        self.base_layer = nn.Sequential(*list(resnet.children())[:-2])
        self.spaConv = nn.Conv2d(2048, 2400, 1,)

        # add spatial aggregation layer
        self.wldPool = WeldonPooling(15)
        # Linear layer for imagenet classification
        self.fc = nn.Linear(2400, 1000)

        # Loading pretrained weights of resnet weldon on imagenet classification
        if pretrained:
            try:
                state_di = torch.load(
                    weldon_pretrained_path, map_location=lambda storage, loc: storage)['state_dict']
                self.load_state_dict(state_di)
            except Exception:
                print("Error when loading pretrained resnet weldon") 
開發者ID:technicolor-research,項目名稱:dsve-loc,代碼行數:23,代碼來源:weldonModel.py

示例12: ImageEncoder

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def ImageEncoder(encoder, load):
    encoder = ImageEncoderType.from_string(encoder)
    if encoder is ImageEncoderType.RESNET152:
        encoder = models.resnet152()
        encoder.load_state_dict(torch.load(load))
        encoder.fc = Identity()
        encoder.cuda()
        encoder.eval()
        return encoder 
開發者ID:ExplorerFreda,項目名稱:VSE-C,代碼行數:11,代碼來源:saliency_visualization.py

示例13: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self):
        super(ResNet152Fc, self).__init__()
        model_resnet152 = models.resnet152(pretrained=True)
        self.conv1 = model_resnet152.conv1
        self.bn1 = model_resnet152.bn1
        self.relu = model_resnet152.relu
        self.maxpool = model_resnet152.maxpool
        self.layer1 = model_resnet152.layer1
        self.layer2 = model_resnet152.layer2
        self.layer3 = model_resnet152.layer3
        self.layer4 = model_resnet152.layer4
        self.avgpool = model_resnet152.avgpool
        self.__in_features = model_resnet152.fc.in_features 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:15,代碼來源:backbone.py

示例14: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self):
        super(ResNet152Fc, self).__init__()
        model_resnet152 = models.resnet152(pretrained=True)
        self.conv1 = model_resnet152.conv1
        self.bn1 = model_resnet152.bn1
        self.relu = model_resnet152.relu
        self.maxpool = model_resnet152.maxpool
        self.layer1 = model_resnet152.layer1
        self.layer2 = model_resnet152.layer2
        self.layer3 = model_resnet152.layer3
        self.layer4 = model_resnet152.layer4
        self.avgpool = model_resnet152.avgpool 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:14,代碼來源:backbone.py

示例15: __init__

# 需要導入模塊: from torchvision import models [as 別名]
# 或者: from torchvision.models import resnet152 [as 別名]
def __init__(self, zeroshot, embed_dim=None, att_domains=None, num_train_classes=None, l2_weight=None):
        """
        :param zeroshot: Whether we're running in zeroshot mode (
            can be true or False).
        :param embed_dim: Dimension of embeddings (probably 300)
        :param att_dims: List of domain sizes per attribute.
        :param num_train_classes: If we're doing pretraining, number of classes to use
        """
        super(ImsituModel, self).__init__()

        self.l2_weight = l2_weight
        if zeroshot:
            if (embed_dim is not None) and (att_domains is not None):
                print("Using embeddings and attributes for zeroshot")
            elif embed_dim is not None:
                print("Using embeddings for zeroshot")
            elif att_domains is not None:
                print("using attributes for zeroshot")
            else:
                raise ValueError("Must supply embeddings or attributes for zeroshot")
            self.fc_dim = None
            self.att_domains = att_domains if att_domains is not None else []
            self.embed_dim = embed_dim
        else:
            if num_train_classes is None:
                raise ValueError("Must supply a # of training classes")
            self.fc_dim = num_train_classes
            self.att_domains = []
            self.embed_dim = None

        self.resnet152 = get_pretrained_resnet(self.fc_dim)

        if self.embed_dim is not None:
            self.embed_linear = nn.Linear(ENCODING_SIZE, self.embed_dim)
            _init_fc(self.embed_linear)

        if self.att_dim is not None:
            self.att_linear = nn.Linear(ENCODING_SIZE, self.att_dim)
            _init_fc(self.att_linear) 
開發者ID:uwnlp,項目名稱:verb-attributes,代碼行數:41,代碼來源:imsitu_model.py


注:本文中的torchvision.models.resnet152方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。