當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet.resnet18方法代碼示例

本文整理匯總了Python中torchvision.models.resnet.resnet18方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet.resnet18方法的具體用法?Python resnet.resnet18怎麽用?Python resnet.resnet18使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.models.resnet的用法示例。


在下文中一共展示了resnet.resnet18方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward_pytorch

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def forward_pytorch(weightfile, image):
    net=resnet.resnet18()
    checkpoint = torch.load(weightfile)
    net.load_state_dict(checkpoint)
    if args.cuda:
        net.cuda()
    print(net)
    net.eval()
    image = torch.from_numpy(image)
    if args.cuda:
        image = Variable(image.cuda())
    else:
        image = Variable(image)
    t0 = time.time()
    blobs = net.forward(image)
    #print(blobs.data.numpy().flatten())
    t1 = time.time()
    return t1-t0, blobs, net.parameters()

# Reference from: 
開發者ID:xxradon,項目名稱:PytorchToCaffe,代碼行數:22,代碼來源:verify_deploy.py

示例2: __init__

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def __init__(self, pretrained=True, input_channels=3):
        model = resnet.resnet18(pretrained=pretrained)
        super().__init__(
            model=model,
            input_channels=input_channels) 
開發者ID:PavelOstyakov,項目名稱:pipeline,代碼行數:7,代碼來源:resnet.py

示例3: __init__

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def __init__(self):
        super().__init__()
        rn18 = resnet18(pretrained=True)


        # discard last Resnet block, avrpooling and classification FC
        # layer1 = up to and including conv3 block
        self.layer1 = nn.Sequential(*list(rn18.children())[:6])
        # layer2 = conv4 block only
        self.layer2 = nn.Sequential(*list(rn18.children())[6:7])

        # modify conv4 if necessary
        # Always deal with stride in first block
        modulelist = list(self.layer2.children())
        _ModifyBlock(modulelist[0], stride=(1,1)) 
開發者ID:mlperf,項目名稱:inference,代碼行數:17,代碼來源:base_model_r34.py

示例4: test_speedup_integration

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def test_speedup_integration(self):
        for model_name in ['resnet18', 'squeezenet1_1', 'mobilenet_v2']:
            Model = getattr(models, model_name)
            net = Model(pretrained=True, progress=False).to(device)
            net.eval() # this line is necessary
            # random generate the prune config for the pruner
            cfgs = generate_random_sparsity(net)
            pruner = L1FilterPruner(net, cfgs)
            pruner.compress()
            pruner.export_model(MODEL_FILE, MASK_FILE)
            pruner._unwrap_model()
            speedup_model = Model().to(device)
            speedup_model.eval()
            state_dict = torch.load(MODEL_FILE)
            speedup_model.load_state_dict(state_dict)
            zero_bn_bias(net)
            zero_bn_bias(speedup_model)

            data = torch.ones(BATCH_SIZE, 3, 224, 224).to(device)
            ms = ModelSpeedup(speedup_model, data, MASK_FILE)
            ms.speedup_model()
            ori_out = net(data)
            speeded_out = speedup_model(data)
            ori_sum = torch.sum(ori_out).item()
            speeded_sum = torch.sum(speeded_out).item()
            print('Sum of the output of %s (before speedup):'%model_name, ori_sum)
            print('Sum of the output of %s (after speedup):'%model_name, speeded_sum)
            assert (abs(ori_sum - speeded_sum) / abs(ori_sum) < RELATIVE_THRESHOLD) or \
                   (abs(ori_sum - speeded_sum) < ABSOLUTE_THRESHOLD) 
開發者ID:microsoft,項目名稱:nni,代碼行數:31,代碼來源:test_model_speedup.py

示例5: __init__

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def __init__(self, classes=19):
        """
        Model initialization
        :param x_n: number of input neurons
        :type x_n: int
        """
        super().__init__()

        base = resnet.resnet18(pretrained=True)

        self.in_block = nn.Sequential(
            base.conv1,
            base.bn1,
            base.relu,
            base.maxpool
        )

        self.encoder1 = base.layer1
        self.encoder2 = base.layer2
        self.encoder3 = base.layer3
        self.encoder4 = base.layer4

        self.decoder1 = Decoder(64, 64, 3, 1, 1, 0)
        self.decoder2 = Decoder(128, 64, 3, 2, 1, 1)
        self.decoder3 = Decoder(256, 128, 3, 2, 1, 1)
        self.decoder4 = Decoder(512, 256, 3, 2, 1, 1)

        # Classifier
        self.tp_conv1 = nn.Sequential(nn.ConvTranspose2d(64, 32, 3, 2, 1, 1),
                                      nn.BatchNorm2d(32),
                                      nn.ReLU(inplace=True),)
        self.conv2 = nn.Sequential(nn.Conv2d(32, 32, 3, 1, 1),
                                nn.BatchNorm2d(32),
                                nn.ReLU(inplace=True),)
        self.tp_conv2 = nn.ConvTranspose2d(32, classes, 2, 2, 0) 
開發者ID:xiaoyufenfei,項目名稱:Efficient-Segmentation-Networks,代碼行數:37,代碼來源:LinkNet.py

示例6: get

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def get(cls, args):
        model = ResNet3DAutoencoder([2, 2, 2, 2])
        if args.pretrained:
            from torchvision.models.resnet import resnet18
            model2d = resnet18(pretrained=True)
            model.encoder.load_2d(model2d)
        return model 
開發者ID:gsig,項目名稱:PyVideoResearch,代碼行數:9,代碼來源:resnet18_3d_autoencoder.py

示例7: __init__

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def __init__(self, arch, scene_classes=1055):
        super(RGBBranch, self).__init__()

        # --------------------------------#
        #          Base Network           #
        # ------------------------------- #
        if arch == 'ResNet-18':
            # ResNet-18 Network
            base = resnet.resnet18(pretrained=True)
            # Size parameters for ResNet-18
            size_fc_RGB = 512
        elif arch == 'ResNet-50':
            # ResNet-50 Network
            base = resnet.resnet50(pretrained=True)
            # Size parameters for ResNet-50
            size_fc_RGB = 2048

        # --------------------------------#
        #           RGB Branch            #
        # ------------------------------- #
        # First initial block
        self.in_block = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)
        )

        # Encoder
        self.encoder1 = base.layer1
        self.encoder2 = base.layer2
        self.encoder3 = base.layer3
        self.encoder4 = base.layer4

        # -------------------------------------#
        #            RGB Classifier            #
        # ------------------------------------ #
        self.dropout = nn.Dropout(0.3)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(size_fc_RGB, scene_classes)

        # Loss
        self.criterion = nn.CrossEntropyLoss() 
開發者ID:vpulab,項目名稱:Semantic-Aware-Scene-Recognition,代碼行數:45,代碼來源:RGBBranch.py

示例8: create_model

# 需要導入模塊: from torchvision.models import resnet [as 別名]
# 或者: from torchvision.models.resnet import resnet18 [as 別名]
def create_model(model_name, num_classes=1000, pretrained=False, **kwargs):
    if 'test_time_pool' in kwargs:
        test_time_pool = kwargs.pop('test_time_pool')
    else:
        test_time_pool = True
    if model_name == 'dpn68':
        model = dpn68(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'dpn68b':
        model = dpn68b(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'dpn92':
        model = dpn92(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'dpn98':
        model = dpn98(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'dpn131':
        model = dpn131(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'dpn107':
        model = dpn107(
            pretrained=pretrained, test_time_pool=test_time_pool, num_classes=num_classes)
    elif model_name == 'resnet18':
        model = resnet18(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'resnet34':
        model = resnet34(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'resnet50':
        model = resnet50(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'resnet101':
        model = resnet101(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'resnet152':
        model = resnet152(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'densenet121':
        model = densenet121(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'densenet161':
        model = densenet161(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'densenet169':
        model = densenet169(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'densenet201':
        model = densenet201(pretrained=pretrained, num_classes=num_classes, **kwargs)
    elif model_name == 'inception_v3':
        model = inception_v3(
            pretrained=pretrained, num_classes=num_classes, transform_input=False, **kwargs)
    else:
        assert False, "Unknown model architecture (%s)" % model_name
    return model 
開發者ID:rwightman,項目名稱:pytorch-dpn-pretrained,代碼行數:49,代碼來源:model_factory.py


注:本文中的torchvision.models.resnet.resnet18方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。