當前位置: 首頁>>代碼示例>>Python>>正文


Python folder.default_loader方法代碼示例

本文整理匯總了Python中torchvision.datasets.folder.default_loader方法的典型用法代碼示例。如果您正苦於以下問題:Python folder.default_loader方法的具體用法?Python folder.default_loader怎麽用?Python folder.default_loader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.datasets.folder的用法示例。


在下文中一共展示了folder.default_loader方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def preprocess(self, x, avoid_precomp=False):
        """
        Loads a single example using this field.

        Args:
            x:
            avoid_precomp:

        Returns:

        """
        if self.precomp_path and not avoid_precomp:
            precomp_file = h5py.File(self.precomp_path, 'r')
            precomp_data = precomp_file['data']
            return precomp_data[self.precomp_index.index(x)]
        else:
            x = default_loader(x)
            if self.preprocessing is not None:
                x = self.preprocessing(x)
            else:
                x = transforms.ToTensor()(x)
            return x 
開發者ID:aimagelab,項目名稱:speaksee,代碼行數:24,代碼來源:field.py

示例2: load_image

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def load_image(img_fn):
    """Load the specified image and return a [H,W,3] Numpy array.
    """
    return default_loader(img_fn)
    # # Load image
    # image = skimage.io.imread(img_fn)
    # # If grayscale. Convert to RGB for consistency.
    # if image.ndim != 3:
    #     image = skimage.color.gray2rgb(image)
    # # If has an alpha channel, remove it for consistency
    # if image.shape[-1] == 4:
    #     image = image[..., :3]
    # return image


# Let's do 16x9
# Two common resolutions: 16x9 and 16/6 -> go to 16x8 as that's simple
# let's say width is 576. for neural motifs it was 576*576 pixels so 331776. here we have 2x*x = 331776-> 408 base
# so the best thing that's divisible by 4 is 384. that's 
開發者ID:yuweijiang,項目名稱:HGL-pytorch,代碼行數:21,代碼來源:box_utils.py

示例3: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self, path, mat_path="data/market/attribute/market_attribute.mat", transfrom=None, loader=default_loader):
        assert os.path.exists(path) and os.path.exists(mat_path)
        self.path = path
        self.mat = loadmat(mat_path)["market_attribute"][0][0]
        self.attrs = self._make_attr_dict("test")
        self.transform = transfrom
        self.loader = loader

        file_list = os.listdir(self.path)
        self.file_list = []
        for item in  file_list:
            if not item.endswith('.jpg') and not item.endswith('.png'):
                continue
            self.file_list.append(item)

        with open("market_name_to_id_test.json", "r") as f:
            import json
            data = json.load(f)
        self.name_to_id = data 
開發者ID:budui,項目名稱:Human-Pose-Transfer,代碼行數:21,代碼來源:cal_apr.py

示例4: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self, files, metadata=None, loader=default_loader):
        """
        metadata (List[Dict[Type]] or List[Type], Optional):
            metadata to be added to each sample.
            The Type can be anything that pytorch default_collate can handle.
            If Type is tensor, make sure that the tensors are of same dimension.
        """
        if metadata is not None:
            assert isinstance(metadata, list), "metadata should be a list"
            assert len(files) == len(metadata)
            assert len(files) > 0, "Empty ListDataset is not allowed"
            if not isinstance(metadata[0], dict):
                metadata = [{"target": target} for target in metadata]
        self.files = files
        self.metadata = metadata
        self.loader = loader 
開發者ID:facebookresearch,項目名稱:ClassyVision,代碼行數:18,代碼來源:list_dataset.py

示例5: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self, image_roots,
            transform=None,
            loader=default_loader,
            stacker=None,
            intersection=False,
            verbose=None,
            size=None):
        self.image_roots = image_roots
        self.images = make_parallel_dataset(image_roots,
                intersection=intersection, verbose=verbose)
        if len(self.images) == 0:
            raise RuntimeError("Found 0 images within: %s" % image_roots)
        if size is not None:
            self.image = self.images[:size]
        if transform is not None and not hasattr(transform, '__iter__'):
            transform = [transform for _ in image_roots]
        self.transforms = transform
        self.stacker = stacker
        self.loader = loader 
開發者ID:CSAILVision,項目名稱:gandissect,代碼行數:21,代碼來源:parallelfolder.py

示例6: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self,root, train=True, transform=None, target_transform=None, loader=default_loader):
        """

        :param root:
        :param train:
        :param transform:
        :param target_transform:
        :param loader:
        """
        self.transform = transform
        self.target_transform = transform

        if os.path.exists(os.path.join(root,"idenprof","train","chef")) == False:
                print("Downloading {}".format("https://github.com/OlafenwaMoses/IdenProf/releases/download/v1.0/idenprof-jpg.zip"))
                download_file("https://github.com/OlafenwaMoses/IdenProf/releases/download/v1.0/idenprof-jpg.zip", "idenprof.zip", extract_path=root)

        super(IdenProf,self).__init__(root=os.path.join(root,"idenprof","train" if train else "test"),transform=transform,target_transform=target_transform,loader=loader) 
開發者ID:johnolafenwa,項目名稱:TorchFusion,代碼行數:19,代碼來源:datasets.py

示例7: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self, image_folder, bone_folder, mask_folder, annotations_file_path,
                 exclude_fields=None, flip_rate=0.0, loader=default_loader, transform=DEFAULT_TRANS):
        self.image_folder = image_folder
        self.bone_folder = bone_folder
        self.mask_folder = mask_folder

        self.flip_rate = flip_rate
        self.use_flip = self.flip_rate > 0.0

        self.exclude_fields = [] if exclude_fields is None else exclude_fields

        self.key_points = self.load_key_points(annotations_file_path)

        self.transform = transform
        self.loader = loader 
開發者ID:budui,項目名稱:Human-Pose-Transfer,代碼行數:17,代碼來源:base.py

示例8: __getitem__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __getitem__(self, idx):
        img_name = join(self.root_dir,
                        self.partition[self.mode][idx])
        image = default_loader(img_name)

        if self.transform is not None:
            image = self.transform(image)

        return image 
開發者ID:tigvarts,項目名稱:vaeac,代碼行數:11,代碼來源:datasets.py

示例9: _remove_all_not_found_image

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def _remove_all_not_found_image(df: pd.DataFrame, path_to_images: Path) -> pd.DataFrame:
    clean_rows = []
    for _, row in df.iterrows():
        image_id = row["image_id"]
        try:
            file_name = path_to_images / f"{image_id}.jpg"
            _ = default_loader(file_name)
        except (FileNotFoundError, OSError, UnboundLocalError) as ex:
            logger.info(f"broken image {file_name} : {ex}")
        else:
            clean_rows.append(row)
    df_clean = pd.DataFrame(clean_rows)
    return df_clean 
開發者ID:truskovskiyk,項目名稱:nima.pytorch,代碼行數:15,代碼來源:clean_dataset.py

示例10: predict_from_file

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def predict_from_file(self, image_path: Path):
        image = default_loader(image_path)
        return self.predict(image) 
開發者ID:truskovskiyk,項目名稱:nima.pytorch,代碼行數:5,代碼來源:inference_model.py

示例11: __getitem__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __getitem__(self, item: int) -> Tuple[torch.Tensor, np.ndarray]:
        row = self.df.iloc[item]

        image_id = row["image_id"]
        image_path = self.images_path / f"{image_id}.jpg"
        image = default_loader(image_path)
        x = self.transform(image)

        y = row[1:].values.astype("float32")
        p = y / y.sum()

        return x, p 
開發者ID:truskovskiyk,項目名稱:nima.pytorch,代碼行數:14,代碼來源:dataset.py

示例12: loaderfn

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def loaderfn(fn): return (default_loader(fn), fn) 
開發者ID:cvlab-columbia,項目名稱:oops,代碼行數:3,代碼來源:compute_places_features.py

示例13: __init__

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def __init__(self, root, transform=None, target_transform=None, loader=default_loader):
        self.root = root
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

        self.imgs = [path for path in list_pictures(self.root) if self.id(path) != -1]

        # convert person id to softmax continuous label
        self._id2label = {_id: idx for idx, _id in enumerate(self.unique_ids)} 
開發者ID:levyfan,項目名稱:reid-mgn,代碼行數:12,代碼來源:market1501.py

示例14: imagefolder_loader

# 需要導入模塊: from torchvision.datasets import folder [as 別名]
# 或者: from torchvision.datasets.folder import default_loader [as 別名]
def imagefolder_loader(size=None,root="./data",shuffle=False,class_map=None,batch_size=32,mean=0.5,std=0.5,transform="default",allowed_exts=['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'],source=None,target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param shuffle:
    :param class_map:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param allowed_exts:
    :param source:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if source is not None:
        if os.path.exists(root) == False:
            print("Downloading {}".format(source[0]))
            download_file(source[0],source[1],extract_path=root)
    elif len(os.listdir(root)) == 0:
        print("Downloading {}".format(source[0]))
        download_file(source[0], source[1], extract_path=root)

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = DataFolder(root=root,loader=default_loader,extensions=allowed_exts,transform=trans,target_transform=target_transform,class_map=class_map)

    return DataLoader(data,batch_size=batch_size,shuffle=shuffle,**loader_args) 
開發者ID:johnolafenwa,項目名稱:TorchFusion,代碼行數:54,代碼來源:datasets.py


注:本文中的torchvision.datasets.folder.default_loader方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。