本文整理匯總了Python中torchvision.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python torchvision.__version__方法的具體用法?Python torchvision.__version__怎麽用?Python torchvision.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torchvision
的用法示例。
在下文中一共展示了torchvision.__version__方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_default_conda_env
# 需要導入模塊: import torchvision [as 別名]
# 或者: from torchvision import __version__ [as 別名]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
import torch
import torchvision
return _mlflow_conda_env(
additional_conda_deps=[
"pytorch={}".format(torch.__version__),
"torchvision={}".format(torchvision.__version__),
],
additional_pip_deps=[
# We include CloudPickle in the default environment because
# it's required by the default pickle module used by `save_model()`
# and `log_model()`: `mlflow.pytorch.pickle_module`.
"cloudpickle=={}".format(cloudpickle.__version__)
],
additional_conda_channels=[
"pytorch",
])
示例2: collect_env
# 需要導入模塊: import torchvision [as 別名]
# 或者: from torchvision import __version__ [as 別名]
def collect_env():
"""Collect the information of the running environments."""
env_info = {}
env_info['sys.platform'] = sys.platform
env_info['Python'] = sys.version.replace('\n', '')
cuda_available = torch.cuda.is_available()
env_info['CUDA available'] = cuda_available
if cuda_available:
from torch.utils.cpp_extension import CUDA_HOME
env_info['CUDA_HOME'] = CUDA_HOME
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
try:
nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
nvcc = subprocess.check_output(
f'"{nvcc}" -V | tail -n1', shell=True)
nvcc = nvcc.decode('utf-8').strip()
except subprocess.SubprocessError:
nvcc = 'Not Available'
env_info['NVCC'] = nvcc
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
devices[torch.cuda.get_device_name(k)].append(str(k))
for name, devids in devices.items():
env_info['GPU ' + ','.join(devids)] = name
gcc = subprocess.check_output('gcc --version | head -n1', shell=True)
gcc = gcc.decode('utf-8').strip()
env_info['GCC'] = gcc
env_info['PyTorch'] = torch.__version__
env_info['PyTorch compiling details'] = torch.__config__.show()
env_info['TorchVision'] = torchvision.__version__
env_info['OpenCV'] = cv2.__version__
env_info['MMCV'] = mmcv.__version__
env_info['MMDetection'] = mmdet.__version__
from mmdet.ops import get_compiler_version, get_compiling_cuda_version
env_info['MMDetection Compiler'] = get_compiler_version()
env_info['MMDetection CUDA Compiler'] = get_compiling_cuda_version()
return env_info
示例3: main
# 需要導入模塊: import torchvision [as 別名]
# 或者: from torchvision import __version__ [as 別名]
def main():
save_path = Path(args.save)
save_dir = save_path.parent
name = args.name
save_dir.mkdir(parents=True, exist_ok=True)
assert not save_path.exists(), '{:} already exists'.format(save_path)
print ('torchvision version : {:}'.format(torchvision.__version__))
if name == 'cifar10':
dataset = dset.CIFAR10 (args.root, train=True)
elif name == 'cifar100':
dataset = dset.CIFAR100(args.root, train=True)
elif name == 'imagenet-1k':
dataset = dset.ImageFolder(osp.join(args.root, 'train'))
else: raise TypeError("Unknow dataset : {:}".format(name))
if hasattr(dataset, 'targets'):
targets = dataset.targets
elif hasattr(dataset, 'train_labels'):
targets = dataset.train_labels
elif hasattr(dataset, 'imgs'):
targets = [x[1] for x in dataset.imgs]
else:
raise ValueError('invalid pattern')
print ('There are {:} samples in this dataset.'.format( len(targets) ))
class2index = defaultdict(list)
train, valid = [], []
random.seed(111)
for index, cls in enumerate(targets):
class2index[cls].append( index )
classes = sorted( list(class2index.keys()) )
for cls in classes:
xlist = class2index[cls]
xtrain = random.sample(xlist, int(len(xlist)*args.ratio))
xvalid = list(set(xlist) - set(xtrain))
train += xtrain
valid += xvalid
train.sort()
valid.sort()
## for statistics
class2numT, class2numV = defaultdict(int), defaultdict(int)
for index in train:
class2numT[ targets[index] ] += 1
for index in valid:
class2numV[ targets[index] ] += 1
class2numT, class2numV = dict(class2numT), dict(class2numV)
torch.save({'train': train,
'valid': valid,
'class2numTrain': class2numT,
'class2numValid': class2numV}, save_path)
print ('-'*80)
示例4: collect_env_info
# 需要導入模塊: import torchvision [as 別名]
# 或者: from torchvision import __version__ [as 別名]
def collect_env_info():
data = []
data.append(("sys.platform", sys.platform))
data.append(("Python", sys.version.replace("\n", "")))
data.append(("Numpy", np.__version__))
try:
from detectron2 import _C
except ImportError:
data.append(("detectron2._C", "failed to import"))
else:
data.append(("Detectron2 Compiler", _C.get_compiler_version()))
data.append(("Detectron2 CUDA Compiler", _C.get_cuda_version()))
data.append(get_env_module())
data.append(("PyTorch", torch.__version__))
data.append(("PyTorch Debug Build", torch.version.debug))
try:
data.append(("torchvision", torchvision.__version__))
except AttributeError:
data.append(("torchvision", "unknown"))
has_cuda = torch.cuda.is_available()
data.append(("CUDA available", has_cuda))
if has_cuda:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
devices[torch.cuda.get_device_name(k)].append(str(k))
for name, devids in devices.items():
data.append(("GPU " + ",".join(devids), name))
from torch.utils.cpp_extension import CUDA_HOME
data.append(("CUDA_HOME", str(CUDA_HOME)))
if CUDA_HOME is not None and os.path.isdir(CUDA_HOME):
try:
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
nvcc = subprocess.check_output("'{}' -V | tail -n1".format(nvcc), shell=True)
nvcc = nvcc.decode("utf-8").strip()
except subprocess.SubprocessError:
nvcc = "Not Available"
data.append(("NVCC", nvcc))
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if cuda_arch_list:
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
data.append(("Pillow", PIL.__version__))
try:
import cv2
data.append(("cv2", cv2.__version__))
except ImportError:
pass
env_str = tabulate(data) + "\n"
env_str += collect_torch_env()
return env_str
示例5: load_model
# 需要導入模塊: import torchvision [as 別名]
# 或者: from torchvision import __version__ [as 別名]
def load_model(model_uri, **kwargs):
"""
Load a PyTorch model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model, for example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
- ``models:/<model_name>/<model_version>``
- ``models:/<model_name>/<stage>``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#
artifact-locations>`_.
:param kwargs: kwargs to pass to ``torch.load`` method.
:return: A PyTorch model.
.. code-block:: python
:caption: Example
import torch
import mlflow
import mlflow.pytorch
# Set values
model_path_dir = ...
run_id = "96771d893a5e46159d9f3b49bf9013e2"
pytorch_model = mlflow.pytorch.load_model("runs:/" + run_id + "/" + model_path_dir)
y_pred = pytorch_model(x_new_data)
"""
import torch
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri)
try:
pyfunc_conf = _get_flavor_configuration(
model_path=local_model_path, flavor_name=pyfunc.FLAVOR_NAME)
except MlflowException:
pyfunc_conf = {}
code_subpath = pyfunc_conf.get(pyfunc.CODE)
if code_subpath is not None:
pyfunc_utils._add_code_to_system_path(
code_path=os.path.join(local_model_path, code_subpath))
pytorch_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
if torch.__version__ != pytorch_conf["pytorch_version"]:
_logger.warning(
"Stored model version '%s' does not match installed PyTorch version '%s'",
pytorch_conf["pytorch_version"], torch.__version__)
torch_model_artifacts_path = os.path.join(local_model_path, pytorch_conf['model_data'])
return _load_model(path=torch_model_artifacts_path, **kwargs)