當前位置: 首頁>>代碼示例>>Python>>正文


Python data.TabularDataset方法代碼示例

本文整理匯總了Python中torchtext.data.TabularDataset方法的典型用法代碼示例。如果您正苦於以下問題:Python data.TabularDataset方法的具體用法?Python data.TabularDataset怎麽用?Python data.TabularDataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchtext.data的用法示例。


在下文中一共展示了data.TabularDataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_numericalize_include_lengths

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_include_lengths(self):
        self.write_test_ppid_dataset(data_format="tsv")
        question_field = data.Field(sequential=True, include_lengths=True)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]
        test_example_lengths = [8, 3, 7]

        # Test with include_lengths
        include_lengths_numericalized = question_field.numericalize(
            (test_example_data, test_example_lengths), device=-1)
        verify_numericalized_example(question_field,
                                     test_example_data,
                                     include_lengths_numericalized,
                                     test_example_lengths) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:27,代碼來源:test_field.py

示例2: test_errors

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_errors(self):
        # Test that passing a non-tuple (of data and length) to numericalize
        # with Field.include_lengths = True raises an error.
        with self.assertRaises(ValueError):
            self.write_test_ppid_dataset(data_format="tsv")
            question_field = data.Field(sequential=True, include_lengths=True)
            tsv_fields = [("id", None), ("q1", question_field),
                          ("q2", question_field), ("label", None)]
            tsv_dataset = data.TabularDataset(
                path=self.test_ppid_dataset_path, format="tsv",
                fields=tsv_fields)
            question_field.build_vocab(tsv_dataset)
            test_example_data = [["When", "do", "you", "use", "シ",
                                  "instead", "of", "し?"],
                                 ["What", "is", "2+2", "<pad>", "<pad>",
                                  "<pad>", "<pad>", "<pad>"],
                                 ["Here", "is", "a", "sentence", "with",
                                  "some", "oovs", "<pad>"]]
            question_field.numericalize(
                test_example_data, device=-1) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:22,代碼來源:test_field.py

示例3: test_batch_iter

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_batch_iter(self):
        self.write_test_numerical_features_dataset()
        FLOAT = data.Field(use_vocab=False, sequential=False,
                           dtype=torch.float)
        INT = data.Field(use_vocab=False, sequential=False, is_target=True)
        TEXT = data.Field(sequential=False)

        dst = data.TabularDataset(path=self.test_numerical_features_dataset_path,
                                  format="tsv", skip_header=False,
                                  fields=[("float", FLOAT),
                                          ("int", INT),
                                          ("text", TEXT)])
        TEXT.build_vocab(dst)
        itr = data.Iterator(dst, batch_size=2, device=-1, shuffle=False)
        fld_order = [k for k, v in dst.fields.items() if
                     v is not None and not v.is_target]
        batch = next(iter(itr))
        (x1, x2), y = batch
        x = (x1, x2)[fld_order.index("float")]
        self.assertEquals(y.data[0], 1)
        self.assertEquals(y.data[1], 12)
        self.assertAlmostEqual(x.data[0], 0.1, places=4)
        self.assertAlmostEqual(x.data[1], 0.5, places=4) 
開發者ID:pytorch,項目名稱:text,代碼行數:25,代碼來源:test_batch.py

示例4: test_numericalize_basic

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_basic(self):
        self.write_test_ppid_dataset(data_format="tsv")
        question_field = data.Field(sequential=True)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]

        # Test default
        default_numericalized = question_field.numericalize(test_example_data)
        verify_numericalized_example(question_field, test_example_data,
                                     default_numericalized) 
開發者ID:pytorch,項目名稱:text,代碼行數:23,代碼來源:test_field.py

示例5: test_numericalize_include_lengths

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_include_lengths(self):
        self.write_test_ppid_dataset(data_format="tsv")
        question_field = data.Field(sequential=True, include_lengths=True)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]
        test_example_lengths = [8, 3, 7]

        # Test with include_lengths
        include_lengths_numericalized = question_field.numericalize(
            (test_example_data, test_example_lengths))
        verify_numericalized_example(question_field,
                                     test_example_data,
                                     include_lengths_numericalized,
                                     test_example_lengths) 
開發者ID:pytorch,項目名稱:text,代碼行數:27,代碼來源:test_field.py

示例6: test_numericalize_batch_first

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_batch_first(self):
        self.write_test_ppid_dataset(data_format="tsv")
        question_field = data.Field(sequential=True, batch_first=True)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]

        # Test with batch_first
        include_lengths_numericalized = question_field.numericalize(
            test_example_data)
        verify_numericalized_example(question_field,
                                     test_example_data,
                                     include_lengths_numericalized,
                                     batch_first=True) 
開發者ID:pytorch,項目名稱:text,代碼行數:26,代碼來源:test_field.py

示例7: test_errors

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_errors(self):
        # Test that passing a non-tuple (of data and length) to numericalize
        # with Field.include_lengths = True raises an error.
        with self.assertRaises(ValueError):
            self.write_test_ppid_dataset(data_format="tsv")
            question_field = data.Field(sequential=True, include_lengths=True)
            tsv_fields = [("id", None), ("q1", question_field),
                          ("q2", question_field), ("label", None)]
            tsv_dataset = data.TabularDataset(
                path=self.test_ppid_dataset_path, format="tsv",
                fields=tsv_fields)
            question_field.build_vocab(tsv_dataset)
            test_example_data = [["When", "do", "you", "use", "シ",
                                  "instead", "of", "し?"],
                                 ["What", "is", "2+2", "<pad>", "<pad>",
                                  "<pad>", "<pad>", "<pad>"],
                                 ["Here", "is", "a", "sentence", "with",
                                  "some", "oovs", "<pad>"]]
            question_field.numericalize(
                test_example_data) 
開發者ID:pytorch,項目名稱:text,代碼行數:22,代碼來源:test_field.py

示例8: test_vocab_size

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_vocab_size(self):
        # Set up fields
        question_field = data.Field(sequential=True)
        label_field = data.LabelField()

        # Copied from test_build_vocab with minor changes
        # Write TSV dataset and construct a Dataset
        self.write_test_ppid_dataset(data_format="tsv")
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", label_field)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)

        # Skipping json dataset as we can rely on the original build vocab test
        label_field.build_vocab(tsv_dataset)
        assert label_field.vocab.freqs == Counter({'1': 2, '0': 1})
        expected_stoi = {'1': 0, '0': 1}  # No <unk>
        assert dict(label_field.vocab.stoi) == expected_stoi
        # Turn the stoi dictionary into an itos list
        expected_itos = [x[0] for x in sorted(expected_stoi.items(),
                                              key=lambda tup: tup[1])]
        assert label_field.vocab.itos == expected_itos 
開發者ID:pytorch,項目名稱:text,代碼行數:25,代碼來源:test_field.py

示例9: init_train_set

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def init_train_set(self):
        set_all_random_seed(self.config['random_seed'])
        train_file_path = self.config['train_file']
        print('Loading train set from {}'.format(train_file_path))
        self.train_set = tt_data.TabularDataset(path=train_file_path,
                                                format='csv',
                                                fields=[('Id', self.ID),
                                                        ('Text', self.TEXT),
                                                        ('Pos1', self.POS),
                                                        ('Pos2', self.POS),
                                                        ('Label', self.TRAIN_LABEL)],
                                                skip_header=False)
        self.train_iter = tt_data.Iterator(self.train_set,
                                           sort_key=lambda x: len(x.Text),
                                           batch_size=self.config['train_batch_size'],
                                           train=True,
                                           repeat=False,
                                           sort_within_batch=True,
                                           device=self.device) 
開發者ID:thunlp,項目名稱:DIAG-NRE,代碼行數:21,代碼來源:relation_task.py

示例10: init_dev_set

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def init_dev_set(self):
        dev_file_path = self.config['dev_file']
        print('Loading dev set from {}'.format(dev_file_path))
        self.dev_set = tt_data.TabularDataset(path=dev_file_path,
                                              format='csv',
                                              fields=[('Id', self.ID),
                                                      ('Text', self.TEXT),
                                                      ('Pos1', self.POS),
                                                      ('Pos2', self.POS),
                                                      ('Label', self.LABEL)],
                                              skip_header=False)
        self.dev_iter = tt_data.Iterator(self.dev_set,
                                         sort_key=lambda x: len(x.Text),
                                         batch_size=self.config['test_batch_size'],
                                         train=False,
                                         repeat=False,
                                         sort_within_batch=True,
                                         device=self.device) 
開發者ID:thunlp,項目名稱:DIAG-NRE,代碼行數:20,代碼來源:relation_task.py

示例11: init_test_set

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def init_test_set(self):
        test_file_path = self.config['test_file']
        print('Loading test set {}'.format(test_file_path))
        self.test_set = tt_data.TabularDataset(path=test_file_path,
                                               format='csv',
                                               fields=[('Id', self.ID),
                                                       ('Text', self.TEXT),
                                                       ('Pos1', self.POS),
                                                       ('Pos2', self.POS),
                                                       ('Label', self.LABEL)],
                                               skip_header=False)
        self.test_iter = tt_data.Iterator(self.test_set,
                                          sort_key=lambda x: len(x.Text),
                                          batch_size=self.config['test_batch_size'],
                                          train=False,
                                          repeat=False,
                                          sort_within_batch=True,
                                          device=self.device) 
開發者ID:thunlp,項目名稱:DIAG-NRE,代碼行數:20,代碼來源:relation_task.py

示例12: test_json_dataset_one_key_multiple_fields

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_json_dataset_one_key_multiple_fields(self):
        self.write_test_ppid_dataset(data_format="json")

        question_field = data.Field(sequential=True)
        spacy_tok_question_field = data.Field(sequential=True, tokenize="spacy")
        label_field = data.Field(sequential=False)
        fields = {"question1": [("q1", question_field),
                                ("q1_spacy", spacy_tok_question_field)],
                  "question2": [("q2", question_field),
                                ("q2_spacy", spacy_tok_question_field)],
                  "label": ("label", label_field)}
        dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="json", fields=fields)
        expected_examples = [
            (["When", "do", "you", "use", "シ", "instead", "of", "し?"],
             ["When", "do", "you", "use", "シ", "instead", "of", "し", "?"],
             ["When", "do", "you", "use", "\"&\"",
              "instead", "of", "\"and\"?"],
             ["When", "do", "you", "use", "\"", "&", "\"",
              "instead", "of", "\"", "and", "\"", "?"], "0"),
            (["Where", "was", "Lincoln", "born?"],
             ["Where", "was", "Lincoln", "born", "?"],
             ["Which", "location", "was", "Abraham", "Lincoln", "born?"],
             ["Which", "location", "was", "Abraham", "Lincoln", "born", "?"],
             "1"),
            (["What", "is", "2+2"], ["What", "is", "2", "+", "2"],
             ["2+2=?"], ["2", "+", "2=", "?"], "1")]
        for i, example in enumerate(dataset):
            self.assertEqual(example.q1, expected_examples[i][0])
            self.assertEqual(example.q1_spacy, expected_examples[i][1])
            self.assertEqual(example.q2, expected_examples[i][2])
            self.assertEqual(example.q2_spacy, expected_examples[i][3])
            self.assertEqual(example.label, expected_examples[i][4]) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:35,代碼來源:test_dataset.py

示例13: test_errors

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_errors(self):
        # Ensure that trying to retrieve a key not in JSON data errors
        self.write_test_ppid_dataset(data_format="json")

        question_field = data.Field(sequential=True)
        label_field = data.Field(sequential=False)
        fields = {"qeustion1": ("q1", question_field),
                  "question2": ("q2", question_field),
                  "label": ("label", label_field)}

        with self.assertRaises(ValueError):
            data.TabularDataset(
                path=self.test_ppid_dataset_path, format="json", fields=fields) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:15,代碼來源:test_dataset.py

示例14: test_numericalize_basic

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_basic(self):
        self.write_test_ppid_dataset(data_format="tsv")
        question_field = data.Field(sequential=True)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]
        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]

        # Test default
        default_numericalized = question_field.numericalize(
            test_example_data, device=-1)
        verify_numericalized_example(question_field, test_example_data,
                                     default_numericalized)
        # Test with train=False
        volatile_numericalized = question_field.numericalize(
            test_example_data, device=-1, train=False)
        verify_numericalized_example(question_field, test_example_data,
                                     volatile_numericalized, train=False) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:29,代碼來源:test_field.py

示例15: test_numericalize_postprocessing

# 需要導入模塊: from torchtext import data [as 別名]
# 或者: from torchtext.data import TabularDataset [as 別名]
def test_numericalize_postprocessing(self):
        self.write_test_ppid_dataset(data_format="tsv")

        def reverse_postprocess(arr, vocab, train):
            return [list(reversed(sentence)) for sentence in arr]

        question_field = data.Field(sequential=True,
                                    postprocessing=reverse_postprocess)
        tsv_fields = [("id", None), ("q1", question_field),
                      ("q2", question_field), ("label", None)]

        tsv_dataset = data.TabularDataset(
            path=self.test_ppid_dataset_path, format="tsv",
            fields=tsv_fields)
        question_field.build_vocab(tsv_dataset)

        test_example_data = [["When", "do", "you", "use", "シ",
                              "instead", "of", "し?"],
                             ["What", "is", "2+2", "<pad>", "<pad>",
                              "<pad>", "<pad>", "<pad>"],
                             ["Here", "is", "a", "sentence", "with",
                              "some", "oovs", "<pad>"]]
        reversed_test_example_data = [list(reversed(sentence)) for sentence in
                                      test_example_data]

        postprocessed_numericalized = question_field.numericalize(
            (test_example_data), device=-1)
        verify_numericalized_example(question_field,
                                     reversed_test_example_data,
                                     postprocessed_numericalized) 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:32,代碼來源:test_field.py


注:本文中的torchtext.data.TabularDataset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。