當前位置: 首頁>>代碼示例>>Python>>正文


Python meter.ConfusionMeter方法代碼示例

本文整理匯總了Python中torchnet.meter.ConfusionMeter方法的典型用法代碼示例。如果您正苦於以下問題:Python meter.ConfusionMeter方法的具體用法?Python meter.ConfusionMeter怎麽用?Python meter.ConfusionMeter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchnet.meter的用法示例。


在下文中一共展示了meter.ConfusionMeter方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def __init__(self, faster_rcnn, log_filename=opt.log_filename):
        super(FasterRCNNTrainer, self).__init__()

        self.faster_rcnn = faster_rcnn
        self.rpn_sigma = opt.rpn_sigma
        self.roi_sigma = opt.roi_sigma

        # target creator create gt_bbox gt_label etc as training targets. 
        self.anchor_target_creator = AnchorTargetCreator()
        self.proposal_target_creator = ProposalTargetCreator()

        self.loc_normalize_mean = faster_rcnn.loc_normalize_mean
        self.loc_normalize_std = faster_rcnn.loc_normalize_std

        self.optimizer = self.faster_rcnn.get_optimizer()
        # visdom wrapper
        self.vis = Visualizer(env=opt.env, log_to_filename=log_filename)

        # indicators for training status
        self.rpn_cm = ConfusionMeter(2)
        self.roi_cm = ConfusionMeter(21)
        self.meters = {k: AverageValueMeter() for k in LossTuple._fields}  # average loss 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:24,代碼來源:faster_rcnn_trainer.py

示例2: evaluate

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def evaluate(opt, loader, F, P):
    F.eval()
    P.eval()
    it = iter(loader)
    correct = 0
    total = 0
    confusion = ConfusionMeter(opt.num_labels)
    with torch.no_grad():
        for inputs, targets in tqdm(it):
            outputs = P(F(inputs))
            _, pred = torch.max(outputs, 1)
            confusion.add(pred.data, targets.data)
            total += targets.size(0)
            correct += (pred == targets).sum().item()
    accuracy = correct / total
    log.info('Accuracy on {} samples: {}%'.format(total, 100.0*accuracy))
    log.debug(confusion.conf)
    return accuracy 
開發者ID:ccsasuke,項目名稱:adan,代碼行數:20,代碼來源:train.py

示例3: evaluate

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def evaluate(name, loader, F_s, F_d, C):
    F_s.eval()
    if F_d:
        F_d.eval()
    C.eval()
    it = iter(loader)
    correct = 0
    total = 0
    confusion = ConfusionMeter(opt.num_labels)
    for inputs, targets in tqdm(it):
        targets = targets.to(opt.device)
        if not F_d:
            # unlabeled domain
            d_features = torch.zeros(len(targets), opt.domain_hidden_size).to(opt.device)
        else:
            d_features = F_d(inputs)
        features = torch.cat((F_s(inputs), d_features), dim=1)
        outputs = C(features)
        _, pred = torch.max(outputs, 1)
        confusion.add(pred.data, targets.data)
        total += targets.size(0)
        correct += (pred == targets).sum().item()
    acc = correct / total
    log.info('{}: Accuracy on {} samples: {}%'.format(name, total, 100.0*acc))
    log.debug(confusion.conf)
    return acc 
開發者ID:ccsasuke,項目名稱:man,代碼行數:28,代碼來源:train_man_exp2.py

示例4: profile_for_quantization

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def profile_for_quantization(data_loader, model, criterion, loggers, args):
    """Profile activations for quantization"""
    msglogger.info('--- profile for quantization ---')

    #"""Execute the validation/test loop"""
    #batch_time = tnt.AverageValueMeter()
    #total_samples = len(data_loader.sampler)
    #batch_size = data_loader.batch_size
    #if args.display_confusion:
    #    confusion = tnt.ConfusionMeter(args.num_classes)
    #total_steps = total_samples / batch_size
    #msglogger.info('%d samples (%d per mini-batch)', total_samples, batch_size)

    # Switch to evaluation mode
    model.eval()

    if args.profile_batches <= 0:
        return

    end = time.time()

    data_iter = iter(data_loader)
    for profile_batch in range(args.profile_batches):
        if profile_batch == 0:
            (inputs, target) = next(data_iter)
        else:
            (inputs_i, target_i) = next(data_iter)
            inputs = torch.cat([inputs, inputs_i], dim=0)
            target = torch.cat([target, target_i], dim=0)

    msglogger.info('--- profiling with %d images ---' % inputs.shape[0])

    with torch.no_grad():
        inputs, target = inputs.to('cuda'), target.to('cuda')
        # compute output from model
        output = model(inputs)

    # measure elapsed time
    msglogger.info('==> Profile runtime: %d' % (time.time() - end)) 
開發者ID:cornell-zhang,項目名稱:dnn-quant-ocs,代碼行數:41,代碼來源:compress_classifier.py

示例5: model_analysis

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def model_analysis(model, dataloader, params, temperature=1., num_classes=10):
    """
        Generate Confusion Matrix on evaluation set
    """
    model.eval()
    confusion_matrix = ConfusionMeter(num_classes)
    softmax_scores = []
    predict_correct = []

    with tqdm(total=len(dataloader)) as t:
        for idx, (data_batch, labels_batch) in enumerate(dataloader):

            if params.cuda:
                data_batch, labels_batch = data_batch.cuda(async=True), \
                                           labels_batch.cuda(async=True)
            data_batch, labels_batch = Variable(data_batch), Variable(labels_batch)

            output_batch = model(data_batch)

            confusion_matrix.add(output_batch.data, labels_batch.data)

            softmax_scores_batch = F.softmax(output_batch/temperature, dim=1)
            softmax_scores_batch = softmax_scores_batch.data.cpu().numpy()
            softmax_scores.append(softmax_scores_batch)

            # extract data from torch Variable, move to cpu, convert to numpy arrays
            output_batch = output_batch.data.cpu().numpy()
            labels_batch = labels_batch.data.cpu().numpy()

            predict_correct_batch = (np.argmax(output_batch, axis=1) == labels_batch).astype(int)
            predict_correct.append(np.reshape(predict_correct_batch, (labels_batch.size, 1)))

            t.update()

    softmax_scores = np.vstack(softmax_scores)
    predict_correct = np.vstack(predict_correct)

    return softmax_scores, predict_correct, confusion_matrix.value().astype(int) 
開發者ID:peterliht,項目名稱:knowledge-distillation-pytorch,代碼行數:40,代碼來源:distillation_analysis.py

示例6: get_metrics

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def get_metrics(model, criterion, dataloaders, dataset_sizes, phase='valid'):
    '''
    Loops over phase (train or valid) set to determine acc, loss and 
    confusion meter of the model.
    '''
    confusion_matrix = meter.ConfusionMeter(2, normalized=True)
    running_loss = 0.0
    running_corrects = 0
    for i, data in enumerate(dataloaders[phase]):
        print(i, end='\r')
        labels = data['label'].type(torch.FloatTensor)
        inputs = data['images'][0]
        # wrap them in Variable
        inputs = Variable(inputs.cuda())
        labels = Variable(labels.cuda())
        # forward
        outputs = model(inputs)
        outputs = torch.mean(outputs)
        loss = criterion(outputs, labels, phase)
        # statistics
        running_loss += loss.data[0] * inputs.size(0)
        preds = (outputs.data > 0.5).type(torch.cuda.FloatTensor)
        running_corrects += torch.sum(preds == labels.data)
        confusion_matrix.add(preds, labels.data)

    loss = running_loss / dataset_sizes[phase]
    acc = running_corrects / dataset_sizes[phase]
    print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, loss, acc))
    print('Confusion Meter:\n', confusion_matrix.value()) 
開發者ID:pyaf,項目名稱:DenseNet-MURA-PyTorch,代碼行數:31,代碼來源:train.py

示例7: evaluate_acc

# 需要導入模塊: from torchnet import meter [as 別名]
# 或者: from torchnet.meter import ConfusionMeter [as 別名]
def evaluate_acc(name, loader, vcoab, emb, lang, F_s, F_p, C):
    emb.eval()
    if F_s:
        F_s.eval()
    if F_p:
        F_p.eval()
    C.eval()
    it = iter(loader)
    correct = 0
    total = 0
    confusion = ConfusionMeter(opt.num_labels)
    
    with torch.no_grad():
        for inputs, targets in tqdm(it, ascii=True):
            inputs, lengths, mask, chars, char_lengths = inputs
            embeds = (emb(lang, inputs, chars, char_lengths), lengths)
            shared_features, lang_features = None, None
            if opt.shared_hidden_size > 0:
                shared_features = F_s(embeds)
            if opt.private_hidden_size > 0:
                if not F_p:
                    # unlabeled lang
                    lang_features = torch.zeros(targets.size(0),
                            targets.size(1), opt.private_hidden_size).to(opt.device) 
                else:
                    if opt.Fp_MoE:
                        lang_features, gate_outputs = F_p(embeds)
                    else:
                        lang_features = F_p(embeds)
            if opt.C_MoE:
                outputs, _ = C((shared_features, lang_features, lengths))
            else:
                outputs = C((shared_features, lang_features))
            _, pred = torch.max(outputs, -1)
            confusion.add(pred.detach(), targets.detach())
            total += targets.size(0)
            correct += (pred == targets).sum().item()
        acc = correct / total
        log.info('{}: Accuracy on {} samples: {}%'.format(name, total, 100.0*acc))
        log.debug(confusion.conf)
    return acc 
開發者ID:microsoft,項目名稱:Multilingual-Model-Transfer,代碼行數:43,代碼來源:train_cls_man_moe.py


注:本文中的torchnet.meter.ConfusionMeter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。