當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.remove_self_loops方法代碼示例

本文整理匯總了Python中torch_geometric.utils.remove_self_loops方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.remove_self_loops方法的具體用法?Python utils.remove_self_loops怎麽用?Python utils.remove_self_loops使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch_geometric.utils的用法示例。


在下文中一共展示了utils.remove_self_loops方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x, edge_index):
        """
        Forward propagation pass with features an indices.
        :param x: Feature matrix.
        :param edge_index: Indices.
        """
        edge_index, _ = remove_self_loops(edge_index, None)
        row, col = edge_index

        if self.norm:
            out = scatter_mean(x[col], row, dim=0, dim_size=x.size(0))
        else:
            out = scatter_add(x[col], row, dim=0, dim_size=x.size(0))

        out = torch.cat((out, x), 1)
        out = torch.matmul(out, self.weight)

        if self.bias is not None:
            out = out + self.bias
        if self.norm_embed:
            out = F.normalize(out, p=2, dim=-1)
        return out 
開發者ID:benedekrozemberczki,項目名稱:SGCN,代碼行數:24,代碼來源:signedsageconvolution.py

示例2: __call__

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def __call__(self, data):
        edge_index, edge_attr = data.edge_index, data.edge_attr
        N = data.num_nodes

        value = edge_index.new_ones((edge_index.size(1), ), dtype=torch.float)

        index, value = spspmm(edge_index, value, edge_index, value, N, N, N)
        value.fill_(0)
        index, value = remove_self_loops(index, value)

        edge_index = torch.cat([edge_index, index], dim=1)
        if edge_attr is None:
            data.edge_index, _ = coalesce(edge_index, None, N, N)
        else:
            value = value.view(-1, *[1 for _ in range(edge_attr.dim() - 1)])
            value = value.expand(-1, *list(edge_attr.size())[1:])
            edge_attr = torch.cat([edge_attr, value], dim=0)
            data.edge_index, edge_attr = coalesce(edge_index, edge_attr, N, N)
            data.edge_attr = edge_attr

        return data 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:23,代碼來源:two_hop.py

示例3: barabasi_albert_graph

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def barabasi_albert_graph(num_nodes, num_edges):
    r"""Returns the :obj:`edge_index` of a Barabasi-Albert preferential
    attachment model, where a graph of :obj:`num_nodes` nodes grows by
    attaching new nodes with :obj:`num_edges` edges that are preferentially
    attached to existing nodes with high degree.

    Args:
        num_nodes (int): The number of nodes.
        num_edges (int): The number of edges from a new node to existing nodes.
    """

    assert num_edges > 0 and num_edges < num_nodes

    row, col = torch.arange(num_edges), torch.randperm(num_edges)

    for i in range(num_edges, num_nodes):
        row = torch.cat([row, torch.full((num_edges, ), i, dtype=torch.long)])
        choice = np.random.choice(torch.cat([row, col]).numpy(), num_edges)
        col = torch.cat([col, torch.from_numpy(choice)])

    edge_index = torch.stack([row, col], dim=0)
    edge_index, _ = remove_self_loops(edge_index)
    edge_index = to_undirected(edge_index, num_nodes)

    return edge_index 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:27,代碼來源:random.py

示例4: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x: Union[OptTensor, PairOptTensor],
                pos: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor:
        """"""
        if not isinstance(x, tuple):
            x: PairOptTensor = (x, None)

        if isinstance(pos, Tensor):
            pos: PairTensor = (pos, pos)

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index,
                                               num_nodes=pos[1].size(0))
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: PairOptTensor, pos: PairTensor)
        out = self.propagate(edge_index, x=x, pos=pos, size=None)

        if self.global_nn is not None:
            out = self.global_nn(out)

        return out 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:26,代碼來源:point_conv.py

示例5: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x, edge_index):
        edge_index, _ = remove_self_loops(edge_index)

        deg = degree(edge_index[1 if self.flow == 'source_to_target' else 0],
                     x.size(0), dtype=torch.long)
        deg.clamp_(max=self.max_degree)

        if not self.root_weight:
            edge_index, _ = add_self_loops(edge_index,
                                           num_nodes=x.size(self.node_dim))

        h = self.propagate(edge_index, x=x)

        out = x.new_empty(list(x.size())[:-1] + [self.out_channels])

        for i in deg.unique().tolist():
            idx = (deg == i).nonzero().view(-1)

            r = self.rel_lins[i](h.index_select(self.node_dim, idx))
            if self.root_weight:
                r = r + self.root_lins[i](x.index_select(self.node_dim, idx))

            out.index_copy_(self.node_dim, idx, r)

        return out 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:27,代碼來源:mf_conv.py

示例6: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor:
        """"""
        if isinstance(x, Tensor):
            x: PairTensor = (x, x)

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index,
                                               num_nodes=x[1].size(0))
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: PairTensor)
        out = self.propagate(edge_index, x=x, size=None)

        if self.bias is not None:
            out += self.bias

        return out 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:22,代碼來源:feast_conv.py

示例7: __norm__

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def __norm__(self, edge_index, num_nodes: Optional[int],
                 edge_weight: OptTensor, normalization: Optional[str],
                 lambda_max, dtype: Optional[int] = None,
                 batch: OptTensor = None):

        edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)

        edge_index, edge_weight = get_laplacian(edge_index, edge_weight,
                                                normalization, dtype,
                                                num_nodes)

        if batch is not None and lambda_max.numel() > 1:
            lambda_max = lambda_max[batch[edge_index[0]]]

        edge_weight = (2.0 * edge_weight) / lambda_max
        edge_weight.masked_fill_(edge_weight == float('inf'), 0)

        edge_index, edge_weight = add_self_loops(edge_index, edge_weight,
                                                 fill_value=-1.,
                                                 num_nodes=num_nodes)
        assert edge_weight is not None

        return edge_index, edge_weight 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:25,代碼來源:cheb_conv.py

示例8: process_CSL

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def process_CSL(self):
        path = osp.join(self.raw_dir, 'graphs_Kary_Deterministic_Graphs.pkl')
        with open(path, 'rb') as f:
            adjs = pickle.load(f)

        path = osp.join(self.raw_dir, 'y_Kary_Deterministic_Graphs.pt')
        ys = torch.load(path).tolist()

        data_list = []
        for adj, y in zip(adjs, ys):
            row, col = torch.from_numpy(adj.row), torch.from_numpy(adj.col)
            edge_index = torch.stack([row, col], dim=0).to(torch.long)
            edge_index, _ = remove_self_loops(edge_index)
            data = Data(edge_index=edge_index, y=y, num_nodes=adj.shape[0])
            if self.pre_filter is not None and not self.pre_filter(data):
                continue
            if self.pre_transform is not None:
                data = self.pre_transform(data)
            data_list.append(data)
        return data_list 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:22,代碼來源:gnn_benchmark_dataset.py

示例9: __call__

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def __call__(self, data):
        device = data.edge_index.device

        row = torch.arange(data.num_nodes, dtype=torch.long, device=device)
        col = torch.arange(data.num_nodes, dtype=torch.long, device=device)

        row = row.view(-1, 1).repeat(1, data.num_nodes).view(-1)
        col = col.repeat(data.num_nodes)
        edge_index = torch.stack([row, col], dim=0)

        edge_attr = None
        if data.edge_attr is not None:
            idx = data.edge_index[0] * data.num_nodes + data.edge_index[1]
            size = list(data.edge_attr.size())
            size[0] = data.num_nodes * data.num_nodes
            edge_attr = data.edge_attr.new_zeros(size)
            edge_attr[idx] = data.edge_attr

        edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
        data.edge_attr = edge_attr
        data.edge_index = edge_index

        return data 
開發者ID:tencent-alchemy,項目名稱:Alchemy,代碼行數:25,代碼來源:ggnn.py

示例10: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x, edge_index, edge_weight=None, size=None):
        """"""
        num_nodes = x.shape[0]
        h = torch.matmul(x, self.weight)

        if edge_weight is None:
            edge_weight = torch.ones((edge_index.size(1), ),
                                     dtype=x.dtype,
                                     device=edge_index.device)
        edge_index, edge_weight = remove_self_loops(edge_index=edge_index, edge_attr=edge_weight)
        deg = scatter_add(edge_weight, edge_index[0], dim=0, dim_size=num_nodes) #+ 1e-10

        h_j = edge_weight.view(-1, 1) * h[edge_index[1]]
        aggr_out = scatter_add(h_j, edge_index[0], dim=0, dim_size=num_nodes)
        out = ( deg.view(-1, 1) * self.lin1(x) + aggr_out) + self.lin2(x)
        edge_index, edge_weight = add_self_loops(edge_index=edge_index, edge_weight=edge_weight, num_nodes=num_nodes)
        return out 
開發者ID:malllabiisc,項目名稱:ASAP,代碼行數:19,代碼來源:le_conv.py

示例11: contains_isolated_nodes

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def contains_isolated_nodes(edge_index, num_nodes=None):
    r"""Returns :obj:`True` if the graph given by :attr:`edge_index` contains
    isolated nodes.

    Args:
        edge_index (LongTensor): The edge indices.
        num_nodes (int, optional): The number of nodes, *i.e.*
            :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)

    :rtype: bool
    """
    num_nodes = maybe_num_nodes(edge_index, num_nodes)
    (row, col), _ = remove_self_loops(edge_index)

    return torch.unique(torch.cat((row, col))).size(0) < num_nodes 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:17,代碼來源:isolated.py

示例12: pool_edge

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def pool_edge(cluster, edge_index,
              edge_attr: Optional[torch.Tensor] = None):
    num_nodes = cluster.size(0)
    edge_index = cluster[edge_index.view(-1)].view(2, -1)
    edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
    if edge_index.numel() > 0:
        edge_index, edge_attr = coalesce(edge_index, edge_attr, num_nodes,
                                         num_nodes)
    return edge_index, edge_attr 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:11,代碼來源:pool.py

示例13: forward

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def forward(self, x: Tensor, edge_index: Adj) -> Tensor:
        """"""
        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index,
                                               num_nodes=x.size(self.node_dim))
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        x_norm = F.normalize(x, p=2., dim=-1)

        # propagate_type: (x: Tensor, x_norm: Tensor)
        return self.propagate(edge_index, x=x, x_norm=x_norm, size=None) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:16,代碼來源:agnn_conv.py

示例14: edge_index_from_dict

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def edge_index_from_dict(graph_dict, num_nodes=None):
    row, col = [], []
    for key, value in graph_dict.items():
        row += repeat(key, len(value))
        col += value
    edge_index = torch.stack([torch.tensor(row), torch.tensor(col)], dim=0)
    # NOTE: There are duplicated edges and self loops in the datasets. Other
    # implementations do not remove them!
    edge_index, _ = remove_self_loops(edge_index)
    edge_index, _ = coalesce(edge_index, None, num_nodes, num_nodes)
    return edge_index 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:13,代碼來源:planetoid.py

示例15: parse_npz

# 需要導入模塊: from torch_geometric import utils [as 別名]
# 或者: from torch_geometric.utils import remove_self_loops [as 別名]
def parse_npz(f):
    x = sp.csr_matrix((f['attr_data'], f['attr_indices'], f['attr_indptr']),
                      f['attr_shape']).todense()
    x = torch.from_numpy(x).to(torch.float)
    x[x > 0] = 1

    adj = sp.csr_matrix((f['adj_data'], f['adj_indices'], f['adj_indptr']),
                        f['adj_shape']).tocoo()
    edge_index = torch.tensor([adj.row, adj.col], dtype=torch.long)
    edge_index, _ = remove_self_loops(edge_index)
    edge_index = to_undirected(edge_index, x.size(0))  # Internal coalesce.

    y = torch.from_numpy(f['labels']).to(torch.long)

    return Data(x=x, edge_index=edge_index, y=y) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:17,代碼來源:npz.py


注:本文中的torch_geometric.utils.remove_self_loops方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。