本文整理匯總了Python中torch_geometric.nn.GCNConv方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.GCNConv方法的具體用法?Python nn.GCNConv怎麽用?Python nn.GCNConv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch_geometric.nn
的用法示例。
在下文中一共展示了nn.GCNConv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, dataset, gconv=GCNConv, latent_dim=[32, 32, 32, 1], k=30,
regression=False, adj_dropout=0.2, force_undirected=False):
super(DGCNN, self).__init__(
dataset, gconv, latent_dim, regression, adj_dropout, force_undirected
)
if k < 1: # transform percentile to number
node_nums = sorted([g.num_nodes for g in dataset])
k = node_nums[int(math.ceil(k * len(node_nums)))-1]
k = max(10, k) # no smaller than 10
self.k = int(k)
print('k used in sortpooling is:', self.k)
conv1d_channels = [16, 32]
conv1d_activation = nn.ReLU()
self.total_latent_dim = sum(latent_dim)
conv1d_kws = [self.total_latent_dim, 5]
self.conv1d_params1 = Conv1d(1, conv1d_channels[0], conv1d_kws[0], conv1d_kws[0])
self.maxpool1d = nn.MaxPool1d(2, 2)
self.conv1d_params2 = Conv1d(conv1d_channels[0], conv1d_channels[1], conv1d_kws[1], 1)
dense_dim = int((k - 2) / 2 + 1)
self.dense_dim = (dense_dim - conv1d_kws[1] + 1) * conv1d_channels[1]
self.lin1 = Linear(self.dense_dim, 128)
示例2: test_asap
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def test_asap():
in_channels = 16
edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2]])
num_nodes = edge_index.max().item() + 1
x = torch.randn((num_nodes, in_channels))
for GNN in [GraphConv, GCNConv]:
pool = ASAPooling(in_channels, ratio=0.5, GNN=GNN,
add_self_loops=False)
assert pool.__repr__() == ('ASAPooling(16, ratio=0.5)')
out = pool(x, edge_index)
assert out[0].size() == (num_nodes // 2, in_channels)
assert out[1].size() == (2, 2)
pool = ASAPooling(in_channels, ratio=0.5, GNN=GNN, add_self_loops=True)
assert pool.__repr__() == ('ASAPooling(16, ratio=0.5)')
out = pool(x, edge_index)
assert out[0].size() == (num_nodes // 2, in_channels)
assert out[1].size() == (2, 4)
示例3: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self,
dataset: InMemoryDataset,
hidden: List[int] = [64],
dropout: float = 0.5):
super(GCN, self).__init__()
num_features = [dataset.data.x.shape[1]] + hidden + [dataset.num_classes]
layers = []
for in_features, out_features in zip(num_features[:-1], num_features[1:]):
layers.append(GCNConv(in_features, out_features))
self.layers = ModuleList(layers)
self.reg_params = list(layers[0].parameters())
self.non_reg_params = list([p for l in layers[1:] for p in l.parameters()])
self.dropout = Dropout(p=dropout)
self.act_fn = ReLU()
示例4: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, input_dim, hidden_dim, label_dim, num_layers,
pred_hidden_dims=[], concat=True, bn=True, dropout=0.0, add_self=False, args=None):
super(GCNNet, self).__init__()
self.input_dim = input_dim
print ('GCNNet input_dim:', self.input_dim)
self.hidden_dim = hidden_dim
print ('GCNNet hidden_dim:', self.hidden_dim)
self.label_dim = label_dim
print ('GCNNet label_dim:', self.label_dim)
self.num_layers = num_layers
print ('GCNNet num_layers:', self.num_layers)
# self.concat = concat
# self.bn = bn
# self.add_self = add_self
self.args = args
self.dropout = dropout
self.act = F.relu
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(self.input_dim, self.hidden_dim))
for layer in range(self.num_layers - 2):
self.convs.append(GCNConv(self.hidden_dim, self.hidden_dim))
self.convs.append(GCNConv(self.hidden_dim, self.label_dim))
print ('len(self.convs):', len(self.convs))
示例5: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, num_edge, num_channels, w_in, w_out, num_class, num_nodes, num_layers):
super(GTN, self).__init__()
self.num_edge = num_edge
self.num_channels = num_channels
self.num_nodes = num_nodes
self.w_in = w_in
self.w_out = w_out
self.num_class = num_class
self.num_layers = num_layers
layers = []
for i in range(num_layers):
if i == 0:
layers.append(GTLayer(num_edge, num_channels, num_nodes, first=True))
else:
layers.append(GTLayer(num_edge, num_channels, num_nodes, first=False))
self.layers = nn.ModuleList(layers)
self.cross_entropy_loss = nn.CrossEntropyLoss()
self.gcn = GCNConv(in_channels=self.w_in, out_channels=w_out)
self.linear1 = nn.Linear(self.w_out*self.num_channels, self.w_out)
self.linear2 = nn.Linear(self.w_out, self.num_class)
示例6: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, Gnn_layers, use_gpu):
super().__init__()
self.gnn_layers = nn.ModuleList([GatedGraphConv(2116, 2) for l in range(Gnn_layers)])
#self.gnn_layers = nn.ModuleList([GCNConv(2116,2116) for l in range(Gnn_layers)])
#self.gnn_actfs = nn.ModuleList([nn.LeakyReLU() for l in range(Gnn_layers)])
self.use_gpu = use_gpu
示例7: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, in_channels, hidden_channels, out_channels, depth,
pool_ratios=0.5, sum_res=True, act=F.relu):
super(GraphUNet, self).__init__()
assert depth >= 1
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.depth = depth
self.pool_ratios = repeat(pool_ratios, depth)
self.act = act
self.sum_res = sum_res
channels = hidden_channels
self.down_convs = torch.nn.ModuleList()
self.pools = torch.nn.ModuleList()
self.down_convs.append(GCNConv(in_channels, channels, improved=True))
for i in range(depth):
self.pools.append(TopKPooling(channels, self.pool_ratios[i]))
self.down_convs.append(GCNConv(channels, channels, improved=True))
in_channels = channels if sum_res else 2 * channels
self.up_convs = torch.nn.ModuleList()
for i in range(depth - 1):
self.up_convs.append(GCNConv(in_channels, channels, improved=True))
self.up_convs.append(GCNConv(in_channels, out_channels, improved=True))
self.reset_parameters()
示例8: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, dataset, num_layers, hidden):
super(GCN, self).__init__()
self.conv1 = GCNConv(dataset.num_features, hidden)
self.convs = torch.nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(GCNConv(hidden, hidden))
self.lin1 = Linear(hidden, hidden)
self.lin2 = Linear(hidden, dataset.num_classes)
示例9: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, in_channels, out_channels):
super(GCN, self).__init__()
self.conv1 = GCNConv(in_channels, 16, cached=True)
self.conv2 = GCNConv(16, out_channels, cached=True)
示例10: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, dataset):
super(Net, self).__init__()
self.conv1 = GCNConv(dataset.num_features, args.hidden)
self.conv2 = GCNConv(args.hidden, dataset.num_classes)
示例11: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, in_channels, hidden_channels, out_channels):
super(Encoder, self).__init__()
self.conv1 = GCNConv(in_channels, hidden_channels, cached=True)
self.conv_mu = GCNConv(hidden_channels, out_channels, cached=True)
self.conv_logstd = GCNConv(hidden_channels, out_channels, cached=True)
示例12: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, in_channels, out_channels):
super(Encoder, self).__init__()
self.conv1 = GCNConv(in_channels, 2 * out_channels, cached=True)
if args.model in ['GAE']:
self.conv2 = GCNConv(2 * out_channels, out_channels, cached=True)
elif args.model in ['VGAE']:
self.conv_mu = GCNConv(2 * out_channels, out_channels, cached=True)
self.conv_logstd = GCNConv(2 * out_channels, out_channels,
cached=True)
示例13: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, hidden_channels, num_layers, GNN=GCNConv, k=0.6):
super(DGCNN, self).__init__()
if k < 1: # Transform percentile to number.
num_nodes = sorted([data.num_nodes for data in train_dataset])
k = num_nodes[int(math.ceil(k * len(num_nodes))) - 1]
k = max(10, k)
self.k = int(k)
self.convs = ModuleList()
self.convs.append(GNN(train_dataset.num_features, hidden_channels))
for i in range(0, num_layers - 1):
self.convs.append(GNN(hidden_channels, hidden_channels))
self.convs.append(GNN(hidden_channels, 1))
conv1d_channels = [16, 32]
total_latent_dim = hidden_channels * num_layers + 1
conv1d_kws = [total_latent_dim, 5]
self.conv1 = Conv1d(1, conv1d_channels[0], conv1d_kws[0],
conv1d_kws[0])
self.maxpool1d = MaxPool1d(2, 2)
self.conv2 = Conv1d(conv1d_channels[0], conv1d_channels[1],
conv1d_kws[1], 1)
dense_dim = int((self.k - 2) / 2 + 1)
dense_dim = (dense_dim - conv1d_kws[1] + 1) * conv1d_channels[1]
self.lin1 = Linear(dense_dim, 128)
self.lin2 = Linear(128, 1)
示例14: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self, in_channels):
super(Net, self).__init__()
self.conv1 = GINConv(Seq(Lin(in_channels, 64), ReLU(), Lin(64, 64)))
self.pool1 = SAGPooling(64, min_score=0.001, GNN=GCNConv)
self.conv2 = GINConv(Seq(Lin(64, 64), ReLU(), Lin(64, 64)))
self.pool2 = SAGPooling(64, min_score=0.001, GNN=GCNConv)
self.conv3 = GINConv(Seq(Lin(64, 64), ReLU(), Lin(64, 64)))
self.lin = torch.nn.Linear(64, 1)
示例15: __init__
# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GCNConv [as 別名]
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(dataset.num_features, 16, cached=True)
self.conv2 = GCNConv(16, dataset.num_classes, cached=True)