當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.GATConv方法代碼示例

本文整理匯總了Python中torch_geometric.nn.GATConv方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.GATConv方法的具體用法?Python nn.GATConv怎麽用?Python nn.GATConv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch_geometric.nn的用法示例。


在下文中一共展示了nn.GATConv方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
                 heads):
        super(GAT, self).__init__()

        self.num_layers = num_layers

        self.convs = torch.nn.ModuleList()
        self.convs.append(GATConv(dataset.num_features, hidden_channels,
                                  heads))
        for _ in range(num_layers - 2):
            self.convs.append(
                GATConv(heads * hidden_channels, hidden_channels, heads))
        self.convs.append(
            GATConv(heads * hidden_channels, out_channels, heads,
                    concat=False))

        self.skips = torch.nn.ModuleList()
        self.skips.append(Lin(dataset.num_features, hidden_channels * heads))
        for _ in range(num_layers - 2):
            self.skips.append(
                Lin(hidden_channels * heads, hidden_channels * heads))
        self.skips.append(Lin(hidden_channels * heads, out_channels)) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:24,代碼來源:ogbn_products_gat.py

示例2: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self,
                 node_input_dim=15,
                 output_dim=12,
                 node_hidden_dim=64,
                 num_step_prop=6,
                 num_step_set2set=6):
        super(GAT, self).__init__()
        self.num_step_prop = num_step_prop
        self.lin0 = nn.Linear(node_input_dim, node_hidden_dim)
        self.conv = GATConv(node_hidden_dim, node_hidden_dim)
        
        self.set2set = Set2Set(node_hidden_dim, processing_steps=num_step_set2set)
        self.lin1 = nn.Linear(2 * node_hidden_dim, node_hidden_dim)
        self.lin2 = nn.Linear(node_hidden_dim, output_dim) 
開發者ID:tencent-alchemy,項目名稱:Alchemy,代碼行數:16,代碼來源:gat.py

示例3: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_channels, out_channels, kernel, head=8, dropout=0.5):
            super(My_GATRNNConv, self).__init__()

            # kernel is a Gated GRUCell
            self.rnn = kernel     # [in_channel, out_channel]
            self.conv = GATConv(in_channels, in_channels, heads=head, dropout=dropout)
            self.compress = nn.Linear(in_channels * head, in_channels)
            self.in_channels = in_channels
            self.opt = nn.Linear(in_channels, out_channels) 
開發者ID:gmftbyGMFTBY,項目名稱:MultiTurnDialogZoo,代碼行數:11,代碼來源:layers.py

示例4: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_channels, out_channels):
        super(GAT, self).__init__()
        self.conv1 = GATConv(in_channels, 8, heads=8, dropout=0.6)
        self.conv2 = GATConv(8 * 8, out_channels, dropout=0.6) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:6,代碼來源:gat.py

示例5: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, dataset):
        super(Net, self).__init__()
        self.conv1 = GATConv(
            dataset.num_features,
            args.hidden,
            heads=args.heads,
            dropout=args.dropout)
        self.conv2 = GATConv(
            args.hidden * args.heads,
            dataset.num_classes,
            heads=args.output_heads,
            concat=False,
            dropout=args.dropout) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:15,代碼來源:gat.py

示例6: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = GATConv(dataset.num_features, 8, heads=8,
                             dropout=0.6).jittable()

        self.conv2 = GATConv(64, dataset.num_classes, heads=1, concat=True,
                             dropout=0.6).jittable() 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:9,代碼來源:gat.py

示例7: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = GATConv(dataset.num_features, 8, heads=8, dropout=0.6)
        # On the Pubmed dataset, use heads=8 in conv2.
        self.conv2 = GATConv(8 * 8, dataset.num_classes, heads=1, concat=False,
                             dropout=0.6) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:8,代碼來源:gat.py

示例8: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_dim, out_dim):
        super(Breadth, self).__init__()
        self.gatconv = GATConv(in_dim, out_dim, heads=1) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:5,代碼來源:geniepath.py

示例9: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_dim, out_dim):
        super(Breadth, self).__init__()
        self.gatconv = GATConv(in_dim, out_dim, heads=heads) 
開發者ID:shawnwang-tech,項目名稱:GeniePath-pytorch,代碼行數:5,代碼來源:model_geniepath.py

示例10: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self):
        super(Net, self).__init__()
        self.conv1 = GATConv(train_dataset.num_features, 256, heads=4)
        self.lin1 = torch.nn.Linear(train_dataset.num_features, 4 * 256)
        self.conv2 = GATConv(4 * 256, 256, heads=4)
        self.lin2 = torch.nn.Linear(4 * 256, 4 * 256)
        self.conv3 = GATConv(
            4 * 256, train_dataset.num_classes, heads=6, concat=False)
        self.lin3 = torch.nn.Linear(4 * 256, train_dataset.num_classes) 
開發者ID:shawnwang-tech,項目名稱:GeniePath-pytorch,代碼行數:11,代碼來源:ppi_gat.py

示例11: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, in_dim, out_dim):
        super(GAT, self).__init__()
        self.conv1 = GATConv(in_dim, 256, heads=4)
        self.lin1 = torch.nn.Linear(in_dim, 4 * 256)
        self.conv2 = GATConv(4 * 256, 256, heads=4)
        self.lin2 = torch.nn.Linear(4 * 256, 4 * 256)
        self.conv3 = GATConv(
            4 * 256, out_dim, heads=6, concat=False)
        self.lin3 = torch.nn.Linear(4 * 256, out_dim) 
開發者ID:shawnwang-tech,項目名稱:GeniePath-pytorch,代碼行數:11,代碼來源:model_gat.py

示例12: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, inpt_size, output_size, user_embed_size, 
                 posemb_size, dropout=0.5, threshold=2, head=5):
        # inpt_size: utter_hidden_size + user_embed_size
        super(GATContext, self).__init__()
        # utter + user_embed + pos_embed
        size = inpt_size + user_embed_size + posemb_size
        self.threshold = threshold
        
        # GraphConv
        self.conv1 = GATConv(size, inpt_size, heads=head, 
                             dropout=dropout)
        self.conv2 = GATConv(size, inpt_size, heads=head,
                             dropout=dropout)
        self.conv3 = GATConv(size, inpt_size, heads=head,
                             dropout=dropout)
        self.layer_norm1 = nn.LayerNorm(inpt_size)
        self.layer_norm2 = nn.LayerNorm(inpt_size)
        self.layer_norm3 = nn.LayerNorm(inpt_size)
        self.layer_norm4 = nn.LayerNorm(inpt_size)
        self.compress = nn.Linear(head * inpt_size, inpt_size)

        # rnn for background
        self.rnn = nn.GRU(inpt_size + user_embed_size, inpt_size, bidirectional=True)

        self.linear1 = nn.Linear(inpt_size * 2, inpt_size)
        self.linear2 = nn.Linear(inpt_size, output_size)
        self.drop = nn.Dropout(p=dropout)
        
        # 100 is far bigger than the max turn lengths (cornell and dailydialog datasets)
        self.posemb = nn.Embedding(100, posemb_size)
        self.init_weight() 
開發者ID:gmftbyGMFTBY,項目名稱:MultiTurnDialogZoo,代碼行數:33,代碼來源:MTGAT.py

示例13: __init__

# 需要導入模塊: from torch_geometric import nn [as 別名]
# 或者: from torch_geometric.nn import GATConv [as 別名]
def __init__(self, num_edge, w_in, w_out):
        super(HANLayer, self).__init__()
        self.gat_layer = nn.ModuleList()
        for _ in range(num_edge):
            self.gat_layer.append(GATConv(w_in, w_out // 8, 8))
        self.att_layer = AttentionLayer(w_out) 
開發者ID:THUDM,項目名稱:cogdl,代碼行數:8,代碼來源:han.py


注:本文中的torch_geometric.nn.GATConv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。