本文整理匯總了Python中torch.utils.data.util方法的典型用法代碼示例。如果您正苦於以下問題:Python data.util方法的具體用法?Python data.util怎麽用?Python data.util使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.utils.data
的用法示例。
在下文中一共展示了data.util方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LRHRSeg_BG_Dataset, self).__init__()
self.opt = opt
self.paths_LR = None
self.paths_HR = None
self.paths_HR_bg = None # HR images for background scenes
self.LR_env = None # environment for lmdb
self.HR_env = None
self.HR_env_bg = None
# read image list from lmdb or image files
self.HR_env, self.paths_HR = util.get_image_paths(opt['data_type'], opt['dataroot_GT'])
self.LR_env, self.paths_LR = util.get_image_paths(opt['data_type'], opt['dataroot_LR'])
self.HR_env_bg, self.paths_HR_bg = util.get_image_paths(opt['data_type'],
opt['dataroot_GT_bg'])
assert self.paths_HR, 'Error: HR path is empty.'
if self.paths_LR and self.paths_HR:
assert len(self.paths_LR) == len(self.paths_HR), \
'HR and LR datasets have different number of images - {}, {}.'.format(
len(self.paths_LR), len(self.paths_HR))
self.random_scale_list = [1, 0.9, 0.8, 0.7, 0.6, 0.5]
self.ratio = 10 # 10 OST data samples and 1 DIV2K general data samples(background)
示例2: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
LR_path = None
# get LR image
LR_path = self.paths_LR[index]
img_LR = util.read_img(self.LR_env, LR_path)
H, W, C = img_LR.shape
# change color space if necessary
if self.opt['color']:
img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_LR.shape[2] == 3:
img_LR = img_LR[:, :, [2, 1, 0]]
img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()
return {'LR': img_LR, 'LR_path': LR_path}
示例3: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LQGTDataset, self).__init__()
self.opt = opt
self.data_type = self.opt['data_type']
self.paths_LQ, self.paths_GT = None, None
self.sizes_LQ, self.sizes_GT = None, None
self.LQ_env, self.GT_env = None, None # environment for lmdb
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'])
self.paths_LQ, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
assert self.paths_GT, 'Error: GT path is empty.'
if self.paths_LQ and self.paths_GT:
assert len(self.paths_LQ) == len(
self.paths_GT
), 'GT and LQ datasets have different number of images - {}, {}.'.format(
len(self.paths_LQ), len(self.paths_GT))
self.random_scale_list = [1]
示例4: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LQDataset, self).__init__()
self.opt = opt
self.opt_P = opt
self.LR_paths = None
self.LR_sizes = None # environment for lmdb
self.LR_env = None
self.LR_size = opt['LR_size']
self.real_ker_path = '/mnt/yjchai/SR_data/Flickr2K/kermap.pt'
self.real_ker_map_list = util.load_ker_map_list(self.real_ker_path)
# read image list from lmdb or image files
if opt['data_type'] == 'lmdb':
self.LR_paths, self.LR_sizes = util.get_image_paths(opt['data_type'], opt['dataroot_LQ'])
elif opt['data_type'] == 'img':
self.LR_paths = util.get_image_paths(opt['data_type'], opt['dataroot_LQ']) #LR_list
else:
print('Error: data_type is not matched in Dataset')
assert self.LR_paths, 'Error: LR paths are empty.'
示例5: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LQGTKerDataset, self).__init__()
self.opt = opt
self.opt_F = opt
self.opt_P = opt
self.opt_C = opt
self.LR_paths, self.GT_paths = None, None
self.LR_env, self.GT_env = None, None # environment for lmdb
self.LR_size, self.GT_size = opt['LR_size'], opt['GT_size']
# read image list from lmdb or image files
if opt['data_type'] == 'lmdb':
self.LR_paths, self.LR_sizes = util.get_image_paths(opt['data_type'], opt['dataroot_LQ'])
self.GT_paths, self.GT_sizes = util.get_image_paths(opt['data_type'], opt['dataroot_GT'])
elif opt['data_type'] == 'img':
self.LR_paths = util.get_image_paths(opt['data_type'], opt['dataroot_LQ']) # LR list
self.GT_paths = util.get_image_paths(opt['data_type'], opt['dataroot_GT']) # GT list
else:
print('Error: data_type is not matched in Dataset')
assert self.GT_paths, 'Error: GT paths are empty.'
if self.LR_paths and self.GT_paths:
assert len(self.LR_paths) == len(self.GT_paths), 'GT and LR datasets have different number of images - {}, {}.'.format(len(self.LR_paths), len(self.GT_paths))
self.random_scale_list = [1]
示例6: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
if self.data_type == 'lmdb' and self.LQ_env is None:
self._init_lmdb()
LQ_path = None
# get LQ image
LQ_path = self.LQ_path[index]
resolution = [int(s) for s in self.sizes_LQ[index].split('_')
] if self.data_type == 'lmdb' else None
img_LQ = util.read_img(self.LQ_env, LQ_path, resolution)
H, W, C = img_LQ.shape
if self.opt['color']: # change color space if necessary
img_LQ = util.channel_convert(C, self.opt['color'], [img_LQ])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_LQ.shape[2] == 3:
img_LQ = img_LQ[:, :, [2, 1, 0]]
img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float()
return {'LQ': img_LQ, 'LQ_path': LQ_path}
示例7: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
# path_LQ = self.data_info['path_LQ'][index]
# path_GT = self.data_info['path_GT'][index]
folder = self.data_info['folder'][index]
idx, max_idx = self.data_info['idx'][index].split('/')
idx, max_idx = int(idx), int(max_idx)
border = self.data_info['border'][index]
if self.cache_data:
select_idx = util.index_generation(idx, max_idx, self.opt['N_frames'],
padding=self.opt['padding'])
imgs_LQ = self.imgs_LQ[folder].index_select(0, torch.LongTensor(select_idx))
img_GT = self.imgs_GT[folder][idx]
else:
pass # TODO
return {
'LQs': imgs_LQ,
'GT': img_GT,
'folder': folder,
'idx': self.data_info['idx'][index],
'border': border
}
示例8: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
if self.data_type == 'lmdb' and self.LQ_env is None:
self._init_lmdb()
LQ_path = None
# get LQ image
LQ_path = self.paths_LQ[index]
resolution = [int(s) for s in self.sizes_LQ[index].split('_')
] if self.data_type == 'lmdb' else None
img_LQ = util.read_img(self.LQ_env, LQ_path, resolution)
H, W, C = img_LQ.shape
if self.opt['color']: # change color space if necessary
img_LQ = util.channel_convert(C, self.opt['color'], [img_LQ])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_LQ.shape[2] == 3:
img_LQ = img_LQ[:, :, [2, 1, 0]]
img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float()
return {'LQ': img_LQ, 'LQ_path': LQ_path}
示例9: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LRDataset, self).__init__()
self.opt = opt
self.paths_LR = None
self.LR_env = None # environment for lmdb
# read image list from lmdb or image files
self.LR_env, self.paths_LR = util.get_image_paths(opt['data_type'], opt['dataroot_LR'])
assert self.paths_LR, 'Error: LR paths are empty.'
示例10: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
if self.opt['data_type'] == 'lmdb':
if self.LR_env is None:
self._init_lmdb()
LR_size = self.LR_size
# get real kernel map
real_ker_map = self.real_ker_map_list[index].float()
# get LR image
LR_path = self.LR_paths[index]
if self.opt['data_type'] == 'lmdb':
resolution = [int(s) for s in self.LR_sizes[index].split('_')]
else:
resolution = None
img_LR = util.read_img(self.LR_env, LR_path, resolution)
H, W, C = img_LR.shape
if self.opt['phase'] == 'train':
#randomly crop
rnd_h = random.randint(0, max(0, H - LR_size))
rnd_w = random.randint(0, max(0, W - LR_size))
img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
# augmentation - flip, rotate
img_LR = util.augment(img_LR, self.opt['use_flip'], self.opt['use_rot'], self.opt['mode'])
# change color space if necessary
if self.opt['color']:
img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_LR.shape[2] == 3:
img_LR = img_LR[:, :, [2, 1, 0]]
img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()
return {'LQ': img_LR, 'LQ_path': LR_path, 'real_ker': real_ker_map}
示例11: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt, ker_map_list, SR_img_list):
super(SRKerDataset, self).__init__()
self.opt = opt
self.opt_C = opt
self.LR_paths = None
self.LR_sizes = None # environment for lmdb
self.LR_env = None
self.LR_size = opt['LR_size']
self.SR_env = None
self.SR_img_list = SR_img_list
self.SR_size = opt['GT_size']
self.ker_map_list = ker_map_list
self.real_ker_path = '/mnt/yjchai/SR_data/Flickr2K/kermap.pt'
self.real_ker_map_list = util.load_ker_map_list(self.real_ker_path)
# read image list from lmdb or image files
#if opt['data_type'] == 'lmdb':
# self.LR_paths, self.LR_sizes = util.get_image_paths(opt['data_type'], opt['dataroot_LQ'])
#elif opt['data_type'] == 'img':
# self.LR_paths = util.get_image_paths(opt['data_type'], opt['dataroot_LQ']) #LR_list
#else:
# print('Error: data_type is not matched in Dataset')
#assert self.LR_paths, 'Error: LR paths are empty.'
示例12: __getitem__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __getitem__(self, index):
if self.opt['data_type'] == 'lmdb':
if self.LR_env is None:
self._init_lmdb()
LR_size = self.LR_size
# get LR image, kernel map
LR_path = self.LR_paths[index]
ker_map = self.ker_maps[index]
if self.opt['data_type'] == 'lmdb':
resolution = [int(s) for s in self.LR_sizes[index].split('_')]
else:
resolution = None
img_LR = util.read_img(self.LR_env, LR_path, resolution)
H, W, C = img_LR.shape
if self.opt['phase'] == 'train':
#randomly crop
rnd_h = random.randint(0, max(0, H - LR_size))
rnd_w = random.randint(0, max(0, W - LR_size))
img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
# augmentation - flip, rotate
img_LR = util.augment(img_LR, self.opt['use_flip'], self.opt['use_rot'], self.opt['mode'])
# change color space if necessary
if self.opt['color']:
img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0]
# BGR to RGB, HWC to CHW, numpy to tensor
if img_LR.shape[2] == 3:
img_LR = img_LR[:, :, [2, 1, 0]]
img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()
return {'LQ': img_LR, 'ker': ker_map, 'LQ_path': LR_path}
示例13: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(LQDataset, self).__init__()
self.opt = opt
self.paths_LQ, self.paths_GT = None, None
self.LQ_env = None # environment for lmdb
self.paths_LQ, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
assert self.paths_LQ, 'Error: LQ paths are empty.'
示例14: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(VideoTestDataset, self).__init__()
self.opt = opt
self.cache_data = opt['cache_data']
self.half_N_frames = opt['N_frames'] // 2
self.GT_root, self.LQ_root = opt['dataroot_GT'], opt['dataroot_LQ']
self.data_type = self.opt['data_type']
self.data_info = {'path_LQ': [], 'path_GT': [], 'folder': [], 'idx': [], 'border': []}
if self.data_type == 'lmdb':
raise ValueError('No need to use LMDB during validation/test.')
#### Generate data info and cache data
self.imgs_LQ, self.imgs_GT = {}, {}
if opt['name'].lower() in ['vid4', 'reds4']:
subfolders_LQ = util.glob_file_list(self.LQ_root)
subfolders_GT = util.glob_file_list(self.GT_root)
for subfolder_LQ, subfolder_GT in zip(subfolders_LQ, subfolders_GT):
subfolder_name = osp.basename(subfolder_GT)
img_paths_LQ = util.glob_file_list(subfolder_LQ)
img_paths_GT = util.glob_file_list(subfolder_GT)
max_idx = len(img_paths_LQ)
assert max_idx == len(
img_paths_GT), 'Different number of images in LQ and GT folders'
self.data_info['path_LQ'].extend(img_paths_LQ)
self.data_info['path_GT'].extend(img_paths_GT)
self.data_info['folder'].extend([subfolder_name] * max_idx)
for i in range(max_idx):
self.data_info['idx'].append('{}/{}'.format(i, max_idx))
border_l = [0] * max_idx
for i in range(self.half_N_frames):
border_l[i] = 1
border_l[max_idx - i - 1] = 1
self.data_info['border'].extend(border_l)
if self.cache_data:
self.imgs_LQ[subfolder_name] = util.read_img_seq(img_paths_LQ)
self.imgs_GT[subfolder_name] = util.read_img_seq(img_paths_GT)
elif opt['name'].lower() in ['vimeo90k-test']:
pass # TODO
else:
raise ValueError(
'Not support video test dataset. Support Vid4, REDS4 and Vimeo90k-Test.')
示例15: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import util [as 別名]
def __init__(self, opt):
super(REDSDataset, self).__init__()
self.opt = opt
# temporal augmentation
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
logger.info('Temporal augmentation interval list: [{}], with random reverse is {}.'.format(
','.join(str(x) for x in opt['interval_list']), self.random_reverse))
self.half_N_frames = opt['N_frames'] // 2
self.GT_root, self.LQ_root = opt['dataroot_GT'], opt['dataroot_LQ']
self.data_type = self.opt['data_type']
self.LR_input = False if opt['GT_size'] == opt['LQ_size'] else True # low resolution inputs
#### directly load image keys
if self.data_type == 'lmdb':
self.paths_GT, _ = util.get_image_paths(self.data_type, opt['dataroot_GT'])
logger.info('Using lmdb meta info for cache keys.')
elif opt['cache_keys']:
logger.info('Using cache keys: {}'.format(opt['cache_keys']))
self.paths_GT = pickle.load(open(opt['cache_keys'], 'rb'))['keys']
else:
raise ValueError(
'Need to create cache keys (meta_info.pkl) by running [create_lmdb.py]')
# remove the REDS4 for testing
self.paths_GT = [
v for v in self.paths_GT if v.split('_')[0] not in ['000', '011', '015', '020']
]
assert self.paths_GT, 'Error: GT path is empty.'
if self.data_type == 'lmdb':
self.GT_env, self.LQ_env = None, None
elif self.data_type == 'mc': # memcached
self.mclient = None
elif self.data_type == 'img':
pass
else:
raise ValueError('Wrong data type: {}'.format(self.data_type))