當前位置: 首頁>>代碼示例>>Python>>正文


Python sampler.SubsetRandomSampler方法代碼示例

本文整理匯總了Python中torch.utils.data.sampler.SubsetRandomSampler方法的典型用法代碼示例。如果您正苦於以下問題:Python sampler.SubsetRandomSampler方法的具體用法?Python sampler.SubsetRandomSampler怎麽用?Python sampler.SubsetRandomSampler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.utils.data.sampler的用法示例。


在下文中一共展示了sampler.SubsetRandomSampler方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def update(self):
        if self.memory_count >= self.capacity:
            state = torch.tensor([t.state for t in self.memory]).float()
            action = torch.LongTensor([t.action for t in self.memory]).view(-1,1).long()
            reward = torch.tensor([t.reward for t in self.memory]).float()
            next_state = torch.tensor([t.next_state for t in self.memory]).float()

            reward = (reward - reward.mean()) / (reward.std() + 1e-7)
            with torch.no_grad():
                target_v = reward + self.gamma * self.target_net(next_state).max(1)[0]

            #Update...
            for index in BatchSampler(SubsetRandomSampler(range(len(self.memory))), batch_size=self.batch_size, drop_last=False):
                v = (self.act_net(state).gather(1, action))[index]
                loss = self.loss_func(target_v[index].unsqueeze(1), (self.act_net(state).gather(1, action))[index])
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
                self.writer.add_scalar('loss/value_loss', loss, self.update_count)
                self.update_count +=1
                if self.update_count % 100 ==0:
                    self.target_net.load_state_dict(self.act_net.state_dict())
        else:
            print("Memory Buff is too less") 
開發者ID:sweetice,項目名稱:Deep-reinforcement-learning-with-pytorch,代碼行數:26,代碼來源:DQN_CartPole-v0.py

示例2: sample

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def sample(self, advantages, num_mini_batch):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        # Make sure we have at least enough for a bunch of batches of size 1.
        assert batch_size >= num_mini_batch

        mini_batch_size = batch_size // num_mini_batch
        sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            observations_batch = self.observations[:-1].view(-1,
                                        *self.observations.size()[2:])[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv = advantages.view(-1, 1)[indices]

            yield observations_batch, actions_batch, \
                return_batch, masks_batch, old_action_log_probs_batch, adv 
開發者ID:ASzot,項目名稱:ppo-pytorch,代碼行數:21,代碼來源:memory.py

示例3: feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def feed_forward_generator(self, advantages, num_mini_batch):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        assert batch_size >= num_mini_batch, (
            "PPO requires the number of processes ({}) "
            "* number of steps ({}) = {} "
            "to be greater than or equal to the number of PPO mini batches ({})."
            "".format(num_processes, num_steps, num_processes * num_steps, num_mini_batch))
        mini_batch_size = batch_size // num_mini_batch
        sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            obs_batch = self.obs[:-1].view(-1, *self.obs.size()[2:])[indices]
            recurrent_hidden_states_batch = self.recurrent_hidden_states[:-1].view(-1,
                self.recurrent_hidden_states.size(-1))[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            value_preds_batch = self.value_preds[:-1].view(-1, 1)[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv_targ = advantages.view(-1, 1)[indices]

            yield obs_batch, recurrent_hidden_states_batch, actions_batch, \
                value_preds_batch, return_batch, masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:25,代碼來源:storage.py

示例4: feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def feed_forward_generator(self, advantages, num_mini_batch):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        assert batch_size >= num_mini_batch, (
            "PPO requires the number of processes ({}) "
            "* number of steps ({}) = {} "
            "to be greater than or equal to the number of PPO mini batches ({})."
            "".format(num_processes, num_steps, num_processes * num_steps, num_mini_batch))
        mini_batch_size = batch_size // num_mini_batch
        sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            obs_batch = self.obs[:-1].view(-1, *self.obs.size()[2:])[indices]
            recurrent_hidden_states_batch = self.recurrent_hidden_states[:-1].view(-1,
                self.recurrent_hidden_states.size(-1))[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv_targ = advantages.view(-1, 1)[indices]

            yield obs_batch, recurrent_hidden_states_batch, actions_batch, \
                return_batch, masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:maximecb,項目名稱:gym-miniworld,代碼行數:24,代碼來源:storage.py

示例5: getDataloader

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def getDataloader(trainset, testset, valid_size, batch_size, num_workers):
    num_train = len(trainset)
    indices = list(range(num_train))
    np.random.shuffle(indices)
    split = int(np.floor(valid_size * num_train))
    train_idx, valid_idx = indices[split:], indices[:split]

    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)

    train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
        sampler=train_sampler, num_workers=num_workers)
    valid_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, 
        sampler=valid_sampler, num_workers=num_workers)
    test_loader = torch.utils.data.DataLoader(testset, batch_size=batch_size, 
        num_workers=num_workers)

    return train_loader, valid_loader, test_loader 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:20,代碼來源:data.py

示例6: _split_sampler

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def _split_sampler(self, split):
        if split == 0.0:
            return None, None

        idx_full = np.arange(self.n_samples)

        np.random.seed(0) 
        np.random.shuffle(idx_full)

        len_valid = int(self.n_samples * split)

        valid_idx = idx_full[0:len_valid]
        train_idx = np.delete(idx_full, np.arange(0, len_valid))
        
        train_sampler = SubsetRandomSampler(train_idx)
        valid_sampler = SubsetRandomSampler(valid_idx)
        
        # turn off shuffle option which is mutually exclusive with sampler
        self.shuffle = False
        self.n_samples = len(train_idx)

        return train_sampler, valid_sampler 
開發者ID:daili0015,項目名稱:ModelFeast,代碼行數:24,代碼來源:base_data_loader.py

示例7: feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def feed_forward_generator(self, advantages, num_mini_batch):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        mini_batch_size = batch_size // num_mini_batch
        sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            indices = torch.LongTensor(indices)

            if advantages.is_cuda:
                indices = indices.cuda()

            observations_batch = self.observations[:-1].view(-1,
                                        *self.observations.size()[2:])[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv_targ = advantages.view(-1, 1)[indices]

            yield observations_batch, actions_batch, \
                return_batch, masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:BoyuanYan,項目名稱:Actor-Critic-Based-Resource-Allocation-for-Multimodal-Optical-Networks,代碼行數:23,代碼來源:storage.py

示例8: _split_sampler

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def _split_sampler(self, split):
        if split == 0.0:
            return None, None
        
        self.shuffle = False

        split_indx = int(self.nbr_examples * split)
        np.random.seed(0)
        
        indxs = np.arange(self.nbr_examples)
        np.random.shuffle(indxs)
        train_indxs = indxs[split_indx:]
        val_indxs = indxs[:split_indx]
        self.nbr_examples = len(train_indxs)

        train_sampler = SubsetRandomSampler(train_indxs)
        val_sampler = SubsetRandomSampler(val_indxs)
        return train_sampler, val_sampler 
開發者ID:yassouali,項目名稱:pytorch_segmentation,代碼行數:20,代碼來源:base_dataloader.py

示例9: split_dataset

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def split_dataset(dataset, split_ratio, batch_size, shuffle_split=False):
    # creating data indices for training and tuning splits
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(dataset_size * split_ratio)

    if shuffle_split:
        np.random.seed(args.seed)
        np.random.shuffle(indices)

    train_indices = indices[split:]
    tune_indices = indices[:split]

    train_sampler = SubsetRandomSampler(train_indices)
    tune_sampler = SubsetRandomSampler(tune_indices)

    train_iterator = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
    tune_iterator = DataLoader(dataset, batch_size=batch_size, sampler=tune_sampler)
    return train_iterator, tune_iterator 
開發者ID:lil-lab,項目名稱:touchdown,代碼行數:21,代碼來源:train.py

示例10: feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def feed_forward_generator(self, advantages, num_mini_batch):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        assert batch_size >= num_mini_batch, (
            f"PPO requires the number processes ({num_processes}) "
            f"* number of steps ({num_steps}) = {num_processes * num_steps} "
            f"to be greater than or equal to the number of PPO mini batches ({num_mini_batch}).")
        mini_batch_size = batch_size // num_mini_batch
        observations_batch = {}
        sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            for k, sensor_ob in self.observations.items():
                observations_batch[k] = sensor_ob[:-1].view(-1, *sensor_ob.size()[2:])[indices]
            states_batch = self.states[:-1].view(-1, self.states.size(-1))[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv_targ = advantages.view(-1, 1)[indices]
            yield observations_batch, states_batch, actions_batch, \
                  return_batch, masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:alexsax,項目名稱:midlevel-reps,代碼行數:23,代碼來源:rollout.py

示例11: feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def feed_forward_generator(self, advantages, num_mini_batch, sampler=None):
        num_steps, num_processes = self.rewards.size()[0:2]
        batch_size = num_processes * num_steps
        assert batch_size >= num_mini_batch, (
            "PPO requires the number of processes ({}) "
            "* number of steps ({}) = {} "
            "to be greater than or equal to the number of PPO mini batches ({})."
            "".format(num_processes, num_steps, num_processes * num_steps, num_mini_batch))
        mini_batch_size = batch_size // num_mini_batch
        if sampler is None:
            sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
        for indices in sampler:
            obs_batch = self.obs[:-1].view(-1, *self.obs.size()[2:])[indices]
            recurrent_hidden_states_batch = self.recurrent_hidden_states[:-1].view(-1, 
                                            self.recurrent_hidden_states.size(-1))[indices]
            actions_batch = self.actions.view(-1, self.actions.size(-1))[indices]
            value_preds_batch = self.value_preds[:-1].view(-1, 1)[indices]
            return_batch = self.returns[:-1].view(-1, 1)[indices]
            masks_batch = self.masks[:-1].view(-1, 1)[indices]
            old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices]
            adv_targ = advantages.view(-1, 1)[indices]

            yield obs_batch, recurrent_hidden_states_batch, actions_batch, value_preds_batch, return_batch, \
                  masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:sumitsk,項目名稱:marl_transfer,代碼行數:26,代碼來源:storage.py

示例12: magent_feed_forward_generator

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def magent_feed_forward_generator(rollouts_list, advantages_list, num_mini_batch):
    num_steps, num_processes = rollouts_list[0].rewards.size()[0:2]
    batch_size = num_processes * num_steps
    mini_batch_size = int((batch_size/num_mini_batch)) # size of minibatch for each agent
    sampler = BatchSampler(SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False)
    for indices in sampler:
        obs_batch=torch.cat([rollout.obs[:-1].view(-1,*rollout.obs.size()[2:])[indices] for rollout in rollouts_list],0)
        recurrent_hidden_states_batch = torch.cat([rollout.recurrent_hidden_states[:-1].view(-1, 
                    rollout.recurrent_hidden_states.size(-1))[indices] for rollout in rollouts_list],0)
        actions_batch = torch.cat([rollout.actions.view(-1,
                    rollout.actions.size(-1))[indices] for rollout in rollouts_list],0)
        value_preds_batch=torch.cat([rollout.value_preds[:-1].view(-1, 1)[indices] for rollout in rollouts_list],0)
        return_batch = torch.cat([rollout.returns[:-1].view(-1, 1)[indices] for rollout in rollouts_list],0)
        masks_batch = torch.cat([rollout.masks[:-1].view(-1, 1)[indices] for rollout in rollouts_list],0)
        old_action_log_probs_batch=torch.cat([rollout.action_log_probs.view(-1,1)[indices] for rollout in rollouts_list],0)
        adv_targ = torch.cat([advantages.view(-1, 1)[indices] for advantages in advantages_list],0)

        yield obs_batch, recurrent_hidden_states_batch, actions_batch, value_preds_batch, return_batch,\
              masks_batch, old_action_log_probs_batch, adv_targ 
開發者ID:sumitsk,項目名稱:marl_transfer,代碼行數:21,代碼來源:ppo.py

示例13: __init__

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def __init__(self, data_source, languages, batch_size, data_parallel_devices=1, shuffle=True, drop_last=False):

        assert batch_size % (len(languages) * data_parallel_devices) == 0, (
            'Batch size must be divisible by number of languages times the number of data parallel devices (if enabled).')

        label_indices = {}
        for idx in range(len(data_source)):
            label = data_source.items[idx]['language']
            if label not in label_indices: label_indices[label] = []
            label_indices[label].append(idx)

        if shuffle:
            self._samplers = [SubsetRandomSampler(label_indices[i]) for i, _ in enumerate(languages)]
        else:
            self._samplers = [SubsetSampler(label_indices[i]) for i, _ in enumerate(languages)]

        self._batch_size = batch_size
        self._drop_last = drop_last
        self._dp_devices = data_parallel_devices 
開發者ID:Tomiinek,項目名稱:Multilingual_Text_to_Speech,代碼行數:21,代碼來源:samplers.py

示例14: train_valid_load

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def train_valid_load(dataset, validSize=0.1, isShuffle=True, seed=123, **kwargs):
    r"""Utility to split a training set into a validation and a training one.

    Note:
        This shouldn't be used if the train and test data are prprocessed differently.
        E.g. if you use dropout or a dictionnary for word embeddings.

    Args:
        dataset (torch.utils.data.Dataset): Dataset to split.
        validSize (float,optional): Percentage to keep for the validation set. In [0,1}.
        isShuffle (bool,optional): Whether should shuffle before splitting.
        seed (int, optional): sets the seed for generating random numbers.
        kwargs: Additional arguments to the `DataLoaders`.

    Returns:
        The train and the valid DataLoader, respectively.
    """
    assert 0 <= validSize <= 1, "validSize:{}. Should be in [0,1]".format(validSize)
    np.random.seed(seed)
    torch.random.manual_seed(seed)

    if validSize == 0:
        return DataLoader(dataset, **kwargs), iter(())

    nTrain = len(dataset)
    idcs = np.arange(nTrain)
    splitIdx = int(validSize * nTrain)

    if isShuffle:
        np.random.shuffle(idcs)

    trainIdcs, validIdcs = idcs[splitIdx:], idcs[:splitIdx]

    trainSampler = SubsetRandomSampler(trainIdcs)
    validSampler = SubsetRandomSampler(validIdcs)

    trainLoader = DataLoader(dataset, sampler=trainSampler, **kwargs)

    validLoader = DataLoader(dataset, sampler=validSampler, **kwargs)

    return trainLoader, validLoader 
開發者ID:YannDubs,項目名稱:Hash-Embeddings,代碼行數:43,代碼來源:helpers.py

示例15: update

# 需要導入模塊: from torch.utils.data import sampler [as 別名]
# 或者: from torch.utils.data.sampler import SubsetRandomSampler [as 別名]
def update(self):
        self.training_step +=1

        state = torch.tensor([t.state for t in self.buffer ], dtype=torch.float)
        action = torch.tensor([t.action for t in self.buffer], dtype=torch.float).view(-1, 1)
        reward = torch.tensor([t.reward for t in self.buffer], dtype=torch.float).view(-1, 1)
        next_state = torch.tensor([t.next_state for t in self.buffer], dtype=torch.float)
        old_action_log_prob = torch.tensor([t.a_log_prob for t in self.buffer], dtype=torch.float).view(-1, 1)

        reward = (reward - reward.mean())/(reward.std() + 1e-10)
        with torch.no_grad():
            target_v = reward + args.gamma * self.critic_net(next_state)

        advantage = (target_v - self.critic_net(state)).detach()
        for _ in range(self.ppo_epoch): # iteration ppo_epoch 
            for index in BatchSampler(SubsetRandomSampler(range(self.buffer_capacity), self.batch_size, True)):
                # epoch iteration, PPO core!!!
                mu, sigma = self.actor_net(state[index])
                n = Normal(mu, sigma)
                action_log_prob = n.log_prob(action[index])
                ratio = torch.exp(action_log_prob - old_action_log_prob)
                
                L1 = ratio * advantage[index]
                L2 = torch.clamp(ratio, 1-self.clip_param, 1+self.clip_param) * advantage[index]
                action_loss = -torch.min(L1, L2).mean() # MAX->MIN desent
                self.actor_optimizer.zero_grad()
                action_loss.backward()
                nn.utils.clip_grad_norm_(self.actor_net.parameters(), self.max_grad_norm)
                self.actor_optimizer.step()

                value_loss = F.smooth_l1_loss(self.critic_net(state[index]), target_v[index])
                self.critic_net_optimizer.zero_grad()
                value_loss.backward()
                nn.utils.clip_grad_norm_(self.critic_net.parameters(), self.max_grad_norm)
                self.critic_net_optimizer.step()

        del self.buffer[:] 
開發者ID:sweetice,項目名稱:Deep-reinforcement-learning-with-pytorch,代碼行數:39,代碼來源:PPO2.py


注:本文中的torch.utils.data.sampler.SubsetRandomSampler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。