當前位置: 首頁>>代碼示例>>Python>>正文


Python data.distributed方法代碼示例

本文整理匯總了Python中torch.utils.data.distributed方法的典型用法代碼示例。如果您正苦於以下問題:Python data.distributed方法的具體用法?Python data.distributed怎麽用?Python data.distributed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.utils.data的用法示例。


在下文中一共展示了data.distributed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_train_data_loader

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def _get_train_data_loader(training_dir, is_distributed, batch_size, **kwargs):
    logger.info("Get train data loader")
    dataset = datasets.MNIST(
        training_dir,
        train=True,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
        download=False,  # True sets a dependency on an external site for our canaries.
    )
    train_sampler = (
        torch.utils.data.distributed.DistributedSampler(dataset) if is_distributed else None
    )
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=train_sampler is None,
        sampler=train_sampler,
        **kwargs
    )
    return train_sampler, train_loader 
開發者ID:aws,項目名稱:sagemaker-python-sdk,代碼行數:23,代碼來源:mnist.py

示例2: distributed_predict

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def distributed_predict(input, target, model, criterion):
    # Allows distributed prediction on uneven batches. Test set isn't always large enough for every GPU to get a batch
    batch_size = input.size(0)
    output = loss = corr1 = corr5 = valid_batches = 0

    if batch_size:
        with torch.no_grad():
            output = model(input)
            loss = criterion(output, target).data
        # measure accuracy and record loss
        valid_batches = 1
        corr1, corr5 = correct(output.data, target, topk=(1, 5))

    metrics = torch.tensor([batch_size, valid_batches, loss, corr1, corr5]).float().cuda()
    batch_total, valid_batches, reduced_loss, corr1, corr5 = dist_utils.sum_tensor(metrics).cpu().numpy()
    reduced_loss = reduced_loss/valid_batches

    top1 = corr1*(100.0/batch_total)
    top5 = corr5*(100.0/batch_total)
    return top1, top5, reduced_loss, batch_total 
開發者ID:cybertronai,項目名稱:imagenet18_old,代碼行數:22,代碼來源:train_imagenet_nv.py

示例3: get_parser

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def get_parser():
    parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
    parser.add_argument('data', metavar='DIR', help='path to dataset')
    parser.add_argument('--save-dir', type=str, default=Path.home()/'imagenet_training',
                        help='Directory to save logs and models.')
    parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                        choices=model_names, help='model architecture'),
    parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                        help='number of data loading workers (default: 4)')
    parser.add_argument('-b', '--batch-size', default=256, type=int,
                        metavar='N', help='mini-batch size (default: 256)')
    parser.add_argument('--fp16', action='store_true', help='Run model fp16 mode.')
    parser.add_argument('--dist-url', default='file://sync.file', type=str,
                        help='url used to set up distributed training')
    parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
    parser.add_argument('--world-size', default=1, type=int,
                        help='Number of GPUs to use. Can either be manually set ' +
                        'or automatically set by using \'python -m multiproc\'.')
    parser.add_argument('--rank', default=0, type=int,
                        help='Used for multi-process training. Can either be manually set ' +
                        'or automatically set by using \'python -m multiproc\'.')
    return parser 
開發者ID:fastai,項目名稱:imagenet-fast,代碼行數:24,代碼來源:jh_warm.py

示例4: main

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def main():

    if cfg.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if cfg.dist_url == "env://" and cfg.world_size == -1:
        cfg.world_size = int(os.environ["WORLD_SIZE"])

    cfg.distributed = cfg.world_size > 1 or cfg.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if cfg.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        cfg.world_size = ngpus_per_node * cfg.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, cfg))
    else:
        # Simply call main_worker function
        main_worker(cfg.gpu, ngpus_per_node, cfg) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:24,代碼來源:imagenet_torch_loader.py

示例5: get_args

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def get_args():
    parent_parser = ArgumentParser(add_help=False)
    parent_parser.add_argument('--data-path', metavar='DIR', type=str,
                               help='path to dataset')
    parent_parser.add_argument('--save-path', metavar='DIR', default=".", type=str,
                               help='path to save output')
    parent_parser.add_argument('--gpus', type=int, default=1,
                               help='how many gpus')
    parent_parser.add_argument('--distributed-backend', type=str, default='dp', choices=('dp', 'ddp', 'ddp2'),
                               help='supports three options dp, ddp, ddp2')
    parent_parser.add_argument('--use-16bit', dest='use_16bit', action='store_true',
                               help='if true uses 16 bit precision')
    parent_parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                               help='evaluate model on validation set')

    parser = ImageNetLightningModel.add_model_specific_args(parent_parser)
    return parser.parse_args() 
開發者ID:PyTorchLightning,項目名稱:pytorch-lightning,代碼行數:19,代碼來源:imagenet.py

示例6: initialize_model

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def initialize_model(
    arch: str, lr: float, momentum: float, weight_decay: float, device_id: int
):
    print(f"=> creating model: {arch}")
    model = models.__dict__[arch]()
    # For multiprocessing distributed, DistributedDataParallel constructor
    # should always set the single device scope, otherwise,
    # DistributedDataParallel will use all available devices.
    model.cuda(device_id)
    cudnn.benchmark = True
    model = DistributedDataParallel(model, device_ids=[device_id])
    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(device_id)
    optimizer = SGD(
        model.parameters(), lr, momentum=momentum, weight_decay=weight_decay
    )
    return model, criterion, optimizer 
開發者ID:pytorch,項目名稱:elastic,代碼行數:19,代碼來源:main.py

示例7: get_train_loader

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def get_train_loader(data_path, batch_size, workers=5, _worker_init_fn=None):
    traindir = os.path.join(data_path, 'train')
    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            #transforms.ToTensor(), Too slow
            #normalize,
        ]))

    if torch.distributed.is_initialized():
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=batch_size, shuffle=(train_sampler is None),
        num_workers=workers, worker_init_fn=_worker_init_fn, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate, drop_last=True)

    return train_loader 
開發者ID:TimDettmers,項目名稱:sparse_learning,代碼行數:23,代碼來源:main.py

示例8: get_val_step

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def get_val_step(model_and_loss):
    def _step(input, target):
        input_var = Variable(input)
        target_var = Variable(target)

        with torch.no_grad():
            loss, output = model_and_loss(input_var, target_var)

        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if torch.distributed.is_initialized():
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        torch.cuda.synchronize()

        return reduced_loss, prec1, prec5

    return _step 
開發者ID:TimDettmers,項目名稱:sparse_learning,代碼行數:24,代碼來源:main.py

示例9: _get_train_data_loader

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def _get_train_data_loader(batch_size, training_dir, is_distributed, **kwargs):
    logger.info("Get train data loader")
    dataset = datasets.MNIST(training_dir, train=True, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ]))
    train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if is_distributed else None
    return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=train_sampler is None,
                                       sampler=train_sampler, **kwargs) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:11,代碼來源:mnist.py

示例10: main

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def main():
    args = parser.parse_args()
    if(not os.path.exists(os.path.join(args.save_folder, args.dataset, args.network))):
        os.makedirs(os.path.join(args.save_folder, args.dataset, args.network))
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'
    os.environ['WORLD_SIZE'] = '2'
    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed
    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node,
                 args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args) 
開發者ID:toandaominh1997,項目名稱:EfficientDet.Pytorch,代碼行數:38,代碼來源:train.py

示例11: save_checkpoint

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def save_checkpoint(epoch):
    if hvd.rank() == 0:
        filepath = args.checkpoint_format.format(epoch=epoch + 1)
        state = {
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }
        torch.save(state, filepath)


# Horovod: average metrics from distributed training. 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:13,代碼來源:pytorch_imagenet_resnet50.py

示例12: main

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        if not args.cpu:
            cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args) 
開發者ID:MerHS,項目名稱:SASA-pytorch,代碼行數:36,代碼來源:main.py

示例13: main

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def main():
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(args.gpu, ngpus_per_node, args) 
開發者ID:hongyi-zhang,項目名稱:Fixup,代碼行數:33,代碼來源:imagenet_train.py

示例14: validate

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def validate(val_loader, model, criterion, epoch, start_time):
    timer = TimeMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    model.eval()
    eval_start_time = time.time()

    for i,(input,target) in enumerate(val_loader):
        if args.short_epoch and (i > 10): break
        batch_num = i+1
        timer.batch_start()
        if args.distributed:
            top1acc, top5acc, loss, batch_total = distributed_predict(input, target, model, criterion)
        else:
            with torch.no_grad():
                output = model(input)
                loss = criterion(output, target).data
            batch_total = input.size(0)
            top1acc, top5acc = accuracy(output.data, target, topk=(1,5))

        # Eval batch done. Logging results
        timer.batch_end()
        losses.update(to_python_float(loss), to_python_float(batch_total))
        top1.update(to_python_float(top1acc), to_python_float(batch_total))
        top5.update(to_python_float(top5acc), to_python_float(batch_total))
        should_print = (batch_num%args.print_freq == 0) or (batch_num==len(val_loader))
        if args.local_rank == 0 and should_print:
            output = (f'Test:  [{epoch}][{batch_num}/{len(val_loader)}]\t'
                      f'Time {timer.batch_time.val:.3f} ({timer.batch_time.avg:.3f})\t'
                      f'Loss {losses.val:.4f} ({losses.avg:.4f})\t'
                      f'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                      f'Acc@5 {top5.val:.3f} ({top5.avg:.3f})')
            log.verbose(output)

    tb.log_eval(top1.avg, top5.avg, time.time()-eval_start_time)
    tb.log('epoch', epoch)

    return top1.avg, top5.avg 
開發者ID:cybertronai,項目名稱:imagenet18_old,代碼行數:42,代碼來源:train_imagenet_nv.py

示例15: preload_data

# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import distributed [as 別名]
def preload_data(self, ep, sz, bs, trndir, valdir, **kwargs): # dummy ep var to prevent error
        if 'lr' in kwargs: del kwargs['lr'] # in case we mix schedule and data phases
        """Pre-initializes data-loaders. Use set_data to start using it."""
        if sz == 128: val_bs = max(bs, 512)
        elif sz == 224: val_bs = max(bs, 256)
        else: val_bs = max(bs, 128)
        return dataloader.get_loaders(trndir, valdir, bs=bs, val_bs=val_bs, sz=sz, workers=args.workers, distributed=args.distributed, **kwargs)

# ### Learning rate scheduler 
開發者ID:cybertronai,項目名稱:imagenet18_old,代碼行數:11,代碼來源:train_imagenet_nv.py


注:本文中的torch.utils.data.distributed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。