本文整理匯總了Python中torch.utils.data.cuda方法的典型用法代碼示例。如果您正苦於以下問題:Python data.cuda方法的具體用法?Python data.cuda怎麽用?Python data.cuda使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.utils.data
的用法示例。
在下文中一共展示了data.cuda方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __iter__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def __iter__(self):
for output in self.dataloader:
if self.dataset.training:
data, target = output
else:
data, ids, ratio = output
if torch.cuda.is_available():
data = data.cuda(non_blocking=True)
if self.dataset.training:
if torch.cuda.is_available():
target = target.cuda(non_blocking=True)
yield data, target
else:
if torch.cuda.is_available():
ids = ids.cuda(non_blocking=True)
ratio = ratio.cuda(non_blocking=True)
yield data, ids, ratio
示例2: train
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def train(model, loader, epoch):
scheduler.step()
model.train()
torch.set_grad_enabled(True)
correct = 0
dataset_size = 0
for batch_idx, (data, target) in enumerate(loader):
dataset_size += data.shape[0]
data, target = data.float(), target.long().squeeze()
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output, _ = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).long().cpu().sum()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t{}'.format(
epoch, batch_idx * args.batch_size, len(loader.dataset),
100. * batch_idx * args.batch_size / len(loader.dataset), loss.item(), args.tag))
logger.add_scalar('train_loss', loss.cpu().item(),
batch_idx + epoch * len(loader))
return float(correct)/float(dataset_size)
示例3: test
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def test(model, loader):
model.eval()
torch.set_grad_enabled(False)
test_loss = 0
correct = 0
dataset_size = 0
da = {}
db = {}
res = []
for data, target, obj_name in loader:
dataset_size += data.shape[0]
data, target = data.float(), target.long().squeeze()
if args.cuda:
data, target = data.cuda(), target.cuda()
output, _ = model(data) # N*C
test_loss += F.nll_loss(output, target, size_average=False).cpu().item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).long().cpu().sum()
for i, j, k in zip(obj_name, pred.data.cpu().numpy(), target.data.cpu().numpy()):
res.append((i, j[0], k))
test_loss /= len(loader.dataset)
acc = float(correct)/float(dataset_size)
return acc, test_loss
示例4: train
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def train(model, loader, epoch):
scheduler.step()
model.train()
torch.set_grad_enabled(True)
correct = 0
dataset_size = 0
for batch_idx, (data, target) in enumerate(loader):
dataset_size += data.shape[0]
data, target = data.float(), target.long().squeeze()
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).long().cpu().sum()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t{}'.format(
epoch, batch_idx * len(data), len(loader.dataset),
100. * batch_idx * len(data) / len(loader.dataset), loss.item(), args.tag))
logger.add_scalar('train_loss', loss.cpu().item(),
batch_idx + epoch * len(loader))
return float(correct)/float(dataset_size)
示例5: test
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def test(model, loader):
model.eval()
torch.set_grad_enabled(False)
test_loss = 0
correct = 0
dataset_size = 0
da = {}
db = {}
res = []
for batch_idx, (data, target, obj_name) in enumerate(loader):
dataset_size += data.shape[0]
data, target = data.float(), target.long().squeeze()
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data) # N*C
test_loss += F.nll_loss(output, target, size_average=False).cpu().item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).long().cpu().sum()
for i, j, k in zip(obj_name, pred.data.cpu().numpy(), target.data.cpu().numpy()):
res.append((i, j[0], k))
test_loss /= len(loader.dataset)
acc = float(correct)/float(dataset_size)
return acc, test_loss
示例6: train
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
示例7: test
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def test(epoch):
model.eval()
test_loss = 0
for i, (data, _) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data, volatile=True)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(),
'results/reconstruction_' + str(epoch) + '.png', nrow=n)
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
示例8: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def __init__(self, **kwargs):
default_attr = dict(
# eval options
model=None, batch_size=32, stride=10,
dataset_path=None, # val dir for imagenet, base dir for CIFAR-10-C
nb_classes=None,
# attack options
attack=None,
# Communication options
fp16_allreduce=False,
# Logging options
logger=None)
default_attr.update(kwargs)
for k in default_attr:
setattr(self, k, default_attr[k])
if self.dataset not in ['imagenet', 'imagenet-c', 'cifar-10', 'cifar-10-c']:
raise NotImplementedError
self.cuda = True
if self.cuda:
self.model.cuda()
self.attack = self.attack()
self._init_loaders()
示例9: create_model
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def create_model(self):
local_model = ResNet18(name='Local',
created_time=self.params['current_time'])
local_model.cuda()
target_model = ResNet18(name='Target',
created_time=self.params['current_time'])
target_model.cuda()
if self.params['resumed_model']:
loaded_params = torch.load(f"saved_models/{self.params['resumed_model']}")
target_model.load_state_dict(loaded_params['state_dict'])
self.start_epoch = loaded_params['epoch']
self.params['lr'] = loaded_params.get('lr', self.params['lr'])
logger.info(f"Loaded parameters from saved model: LR is"
f" {self.params['lr']} and current epoch is {self.start_epoch}")
else:
self.start_epoch = 1
self.local_model = local_model
self.target_model = target_model
示例10: build_model
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def build_model(self):
# Create model from scratch or use a pretrained one
print("=> using model '{}'".format(self._arch))
self._model = models.__dict__[self._arch](num_classes=len(self._labels))
print("=> loading checkpoint '{}'".format(self._ckp))
if self._cuda:
checkpoint = torch.load(self._ckp)
else:
# Load GPU model on CPU
checkpoint = torch.load(self._ckp, map_location=lambda storage, loc: storage)
# Load weights
self._model.load_state_dict(checkpoint['state_dict'])
if self._cuda:
self._model.cuda()
else:
self._model.cpu()
# Preprocess Images to be ImageNet-compliant
示例11: half_mask
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def half_mask(self, inp, gpuID):
mask = torch.FloatTensor(1, inp.size(1), inp.size(2), inp.size(3)).fill_(1.0)
w = int(inp.size(2)/2)
r = np.random.rand()
if r < 0.25: # left
mask[:,:,:, 0:w] = 0.0
elif r < 0.5: # up
mask[:,:,0:w,:] = 0.0
elif r < 0.75: # right
mask[:,:,:,w:inp.size(3)] = 0.0
else: # bottom
mask[:,:,w:inp.size(2),:] = 0.0
mask = mask.cuda(gpuID)
mask = Variable(mask)
out = torch.mul(inp, mask)
return out
示例12: batchify
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def batchify(data, bsz, args):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.gpu:
data = data.cuda()
return data
示例13: testing
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def testing(model, dataset_list, nn_paras):
""" Training an epoch
Args:
model: autoencoder
dataset_list: list of datasets for batch correction
nn_paras: parameters for neural network training
Returns:
code_list: list pf embedded codes
"""
# load nn parameters
cuda = nn_paras['cuda']
data_loader_list = []
num_cells = []
for dataset in dataset_list:
torch_dataset = torch.utils.data.TensorDataset(
torch.FloatTensor(dataset['gene_exp'].transpose()), torch.LongTensor(dataset['cell_labels']))
data_loader = torch.utils.data.DataLoader(torch_dataset, batch_size=len(dataset['cell_labels']),
shuffle=False)
data_loader_list.append(data_loader)
num_cells.append(len(dataset["cell_labels"]))
model.eval()
code_list = [] # list pf embedded codes
for i in range(len(data_loader_list)):
idx = 0
with torch.no_grad():
for data, labels in data_loader_list[i]:
if cuda:
data, labels = data.cuda(), labels.cuda()
code_tmp, _ = model(data)
code_tmp = code_tmp.cpu().numpy()
if idx == 0:
code = np.zeros((code_tmp.shape[1], num_cells[i]))
code[:, idx:idx + code_tmp.shape[0]] = code_tmp.T
idx += code_tmp.shape[0]
code_list.append(code)
return code_list
示例14: reparametrize
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
if args.cuda:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mu)
示例15: sample
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import cuda [as 別名]
def sample(self, model, n):
z = Variable(torch.from_numpy(model.sample(n)[0].astype(np.float32))).cuda()
return self.decode(z)