本文整理匯總了Python中torch.utils.data.DataLoader方法的典型用法代碼示例。如果您正苦於以下問題:Python data.DataLoader方法的具體用法?Python data.DataLoader怎麽用?Python data.DataLoader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.utils.data
的用法示例。
在下文中一共展示了data.DataLoader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_datagen
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def get_datagen(self, X, y, train_mode, loader_params):
if train_mode:
dataset = self.dataset(X, y,
train_mode=True,
image_augment=self.image_augment_train,
image_augment_with_target=self.image_augment_with_target_train,
mask_transform=self.mask_transform,
image_transform=self.image_transform,
image_source=self.dataset_params.image_source)
else:
dataset = self.dataset(X, y,
train_mode=False,
image_augment=self.image_augment_inference,
image_augment_with_target=self.image_augment_with_target_inference,
mask_transform=self.mask_transform,
image_transform=self.image_transform,
image_source=self.dataset_params.image_source)
datagen = DataLoader(dataset, **loader_params)
steps = len(datagen)
return datagen, steps
示例2: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def __init__(self, opt):
self.trainset = GRIDDataset(opt, dset='train')
self.trainset.load_data()
self.testset = GRIDDataset(opt, dset='test')
self.testset.load_data()
self.trainloader = DataLoader(self.trainset, batch_size=opt.batch_size,
shuffle=True, num_workers=opt.num_workers, collate_fn=ctc_collate, pin_memory=True)
self.testloader = DataLoader(self.testset, batch_size=opt.batch_size,
shuffle=False, num_workers=opt.num_workers, collate_fn=ctc_collate, pin_memory=True)
# define network
self.input_img_size = [3, 50, 100]
self.chan, self.height, self.width = self.input_img_size
self.vocab_size = len(self.trainset.vocab)
assert self.testset.vocab <= self.trainset.vocab, 'possible OOV characters in test set'
self.maxT = self.trainset.opt.max_timesteps
self.model = LipNet(opt, self.vocab_size)
self.opt = opt
self.optimfunc = torch.optim.Adam(self.model.parameters(), lr=self.opt.lr)
# learning rate scheduler: fixed LR
示例3: get_data_loader
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def get_data_loader(opt):
if opt.dset_name == 'moving_mnist':
transform = transforms.Compose([vtransforms.ToTensor()])
dset = MovingMNIST(opt.dset_path, opt.is_train, opt.n_frames_input,
opt.n_frames_output, opt.num_objects, transform)
elif opt.dset_name == 'bouncing_balls':
transform = transforms.Compose([vtransforms.Scale(opt.image_size),
vtransforms.ToTensor()])
dset = BouncingBalls(opt.dset_path, opt.is_train, opt.n_frames_input,
opt.n_frames_output, opt.image_size[0], transform)
else:
raise NotImplementedError
dloader = data.DataLoader(dset, batch_size=opt.batch_size, shuffle=opt.is_train,
num_workers=opt.n_workers, pin_memory=True)
return dloader
示例4: train_fine_tuning
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=4):
train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'train'), transform=train_augs), batch_size, shuffle=True)
test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'test'), transform=test_augs), batch_size)
loss = torch.nn.CrossEntropyLoss()
utils.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
示例5: train
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
for epoch in range(num_epochs):
l_sum = 0.0
start = time.time()
for X, Y in data_iter:
enc_optimizer.zero_grad()
dec_optimizer.zero_grad()
l = batch_loss(encoder, decoder, X, Y, loss)
l.backward()
enc_optimizer.step()
dec_optimizer.step()
l_sum += l.item()
if (epoch + 1) % 10 == 0:
print("epoch %d, loss %.3f, time: %.1f sec" % (epoch + 1, l_sum / len(data_iter), time.time() - start))
示例6: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def __init__(self, config):
self.config = config
if config.data_mode == "imgs":
transform = v_transforms.Compose(
[v_transforms.ToTensor(),
v_transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
dataset = v_datasets.ImageFolder(self.config.data_folder, transform=transform)
self.dataset_len = len(dataset)
self.num_iterations = (self.dataset_len + config.batch_size - 1) // config.batch_size
self.loader = DataLoader(dataset,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.data_loader_workers,
pin_memory=config.pin_memory)
elif config.data_mode == "numpy":
raise NotImplementedError("This mode is not implemented YET")
else:
raise Exception("Please specify in the json a specified mode in data_mode")
示例7: load_textset
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def load_textset(n_jobs, use_gpu, pin_memory, corpus, text):
# Text tokenizer
tokenizer = load_text_encoder(**text)
# Dataset
tr_set, dv_set, tr_loader_bs, dv_loader_bs, data_msg = create_textset(
tokenizer, **corpus)
collect_tr = partial(collect_text_batch, mode='train')
collect_dv = partial(collect_text_batch, mode='dev')
# Dataloader (Text data stored in RAM, no need num_workers)
tr_set = DataLoader(tr_set, batch_size=tr_loader_bs, shuffle=True, drop_last=True, collate_fn=collect_tr,
num_workers=0, pin_memory=use_gpu)
dv_set = DataLoader(dv_set, batch_size=dv_loader_bs, shuffle=False, drop_last=False, collate_fn=collect_dv,
num_workers=0, pin_memory=pin_memory)
# Messages to show
data_msg.append('I/O spec. | Token type = {}\t| Vocab size = {}'
.format(tokenizer.token_type, tokenizer.vocab_size))
return tr_set, dv_set, tokenizer.vocab_size, tokenizer, data_msg
示例8: predict
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def predict(train_data_path, test_data_path, slot_names_path, mode, bidirectional, saved_model_path, result_path, cuda):
train_data = load_data(train_data_path)
label2idx, idx2label = build_label_vocab(slot_names_path)
word2idx, idx2word = build_vocab(train_data)
test_data = load_data(test_data_path)
test_X, test_y = build_dataset(test_data, word2idx, label2idx)
test_set = ATISData(test_X, test_y)
test_loader = DataLoader(dataset=test_set,
batch_size=1,
shuffle=False)
vocab_size = len(word2idx)
label_size = len(label2idx)
model = SlotFilling(vocab_size, label_size, mode=mode, bidirectional=bidirectional)
model.load_state_dict(torch.load(saved_model_path))
if cuda:
model = model.cuda()
predicted = do_eval(model, test_loader, cuda)
predicted_labels = [idx2label[idx] for idx in predicted]
gen_result_file(test_data, predicted_labels, result_path)
示例9: tile_prediction
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def tile_prediction(model, image, transforms,
tile_size, tile_step, batch_size):
tiler = ImageSlicer(image.shape,
tile_size=tile_size,
tile_step=tile_step)
tiles = tiler.split(image, value=float(image.min()))
tiles = [transforms(tile) for tile in tiles]
loader = DataLoader(tiles, batch_size=batch_size)
preds_lst = []
for tiles_batch in loader:
pred_batch = model.predict(tiles_batch)
preds_lst.append(pred_batch)
pred = torch.cat(preds_lst, dim=0)
return pred.cpu().numpy()
示例10: main
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def main():
best_acc = 0
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('==> Preparing data..')
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
dataset_train = CIFAR10(root='../data', train=True, download=True,
transform=transforms_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_worker)
# there are 10 classes so the dataset name is cifar-10
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
print('==> Making model..')
net = pyramidnet()
net = nn.DataParallel(net)
net = net.to(device)
num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
print('The number of parameters of model is', num_params)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
# optimizer = optim.SGD(net.parameters(), lr=args.lr,
# momentum=0.9, weight_decay=1e-4)
train(net, criterion, optimizer, train_loader, device)
示例11: prepare_data_loader
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def prepare_data_loader(self, dataset, batch_size, rand_flag=True):
# prepare data loader
if rand_flag:
data_sampler = RandomSampler(dataset)
else:
data_sampler = SequentialSampler(dataset)
if self.custom_collate_fn is None:
dataloader = DataLoader(dataset,
batch_size=batch_size,
sampler=data_sampler)
else:
dataloader = DataLoader(dataset,
batch_size=batch_size,
sampler=data_sampler,
collate_fn=self.custom_collate_fn)
return dataloader
示例12: getTestingData
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def getTestingData(batch_size=64):
__imagenet_stats = {'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225]}
# scale = random.uniform(1, 1.5)
transformed_testing = depthDataset(csv_file='./data/nyu2_test.csv',
transform=transforms.Compose([
Scale(240),
CenterCrop([304, 228], [152, 114]),
ToTensor(is_test=True),
Normalize(__imagenet_stats['mean'],
__imagenet_stats['std'])
]))
dataloader_testing = DataLoader(transformed_testing, batch_size,
shuffle=False, num_workers=4, pin_memory=False)
return dataloader_testing
示例13: get_data_loaders
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def get_data_loaders(filelist, imsz, viewnum, mode, bs, numworkers, classes=None, data_folder=None):
print('Building dataloaders')
dataset_train = DataProvider(filelist, imsz, viewnum,
mode=mode, datadebug=False, classes=classes, data_folder=data_folder)
if mode == 'test':
shuffle = False
else:
shuffle = True
train_loader = DataLoader(dataset_train, batch_size=bs,
shuffle=shuffle, num_workers=numworkers, collate_fn=collate_fn)
print('train num {}'.format(len(dataset_train)))
print('train iter'.format(len(train_loader)))
return train_loader
示例14: __init__
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def __init__(self, model, dataset, test_data_path, test_key_file, embed_path, args):
""" Evaluate the pytorch model that is currently being build
We take the embedding vocabulary currently being trained
"""
self.test_key_file = test_key_file
self.cuda = args.cuda
self.model = model
batch_sampler = NCBatchSampler(
dataset.mentions_pair_length, batchsize=args.batchsize, shuffle=False
)
self.dataloader = DataLoader(
dataset,
collate_fn=padder_collate,
batch_sampler=batch_sampler,
num_workers=args.numworkers,
pin_memory=args.cuda,
)
self.mentions_idx, self.n_pairs = batch_sampler.get_batch_info()
self.load_meta(test_data_path)
示例15: predict_dataset
# 需要導入模塊: from torch.utils import data [as 別名]
# 或者: from torch.utils.data import DataLoader [as 別名]
def predict_dataset(self, dataset, export_path):
"""
Predicts the images in the given dataset and saves it to disk.
Args:
dataset: the dataset of images to be exported, instance of unet.dataset.Image2D
export_path: path to folder where results to be saved
"""
self.net.train(False)
chk_mkdir(export_path)
for batch_idx, (X_batch, *rest) in enumerate(DataLoader(dataset, batch_size=1)):
if isinstance(rest[0][0], str):
image_filename = rest[0][0]
else:
image_filename = '%s.png' % str(batch_idx + 1).zfill(3)
X_batch = Variable(X_batch.to(device=self.device))
y_out = self.net(X_batch).cpu().data.numpy()
io.imsave(os.path.join(export_path, image_filename), y_out[0, 1, :, :])