當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.unbind方法代碼示例

本文整理匯總了Python中torch.unbind方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.unbind方法的具體用法?Python torch.unbind怎麽用?Python torch.unbind使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.unbind方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit_positive

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def fit_positive(rows, cols, yx_min, yx_max, anchors):
    device_id = anchors.get_device() if torch.cuda.is_available() else None
    batch_size, num, _ = yx_min.size()
    num_anchors, _ = anchors.size()
    valid = torch.prod(yx_min < yx_max, -1)
    center = (yx_min + yx_max) / 2
    ij = torch.floor(center)
    i, j = torch.unbind(ij.long(), -1)
    index = i * cols + j
    anchors2 = anchors / 2
    iou_matrix = utils.iou.torch.iou_matrix((yx_min - center).view(-1, 2), (yx_max - center).view(-1, 2), -anchors2, anchors2).view(batch_size, -1, num_anchors)
    iou, index_anchor = iou_matrix.max(-1)
    _positive = []
    cells = rows * cols
    for valid, index, index_anchor in zip(torch.unbind(valid), torch.unbind(index), torch.unbind(index_anchor)):
        index, index_anchor = (t[valid] for t in (index, index_anchor))
        t = utils.ensure_device(torch.ByteTensor(cells, num_anchors).zero_(), device_id)
        t[index, index_anchor] = 1
        _positive.append(t)
    return torch.stack(_positive) 
開發者ID:ruiminshen,項目名稱:yolo2-pytorch,代碼行數:22,代碼來源:__init__.py

示例2: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def forward(self, q, v):
        alpha = self.process_attention(q, v)

        if self.mlp_glimpses > 0:
            alpha = self.linear0(alpha)
            alpha = F.relu(alpha)
            alpha = self.linear1(alpha)

        alpha = F.softmax(alpha, dim=1)

        if alpha.size(2) > 1: # nb_glimpses > 1
            alphas = torch.unbind(alpha, dim=2)
            v_outs = []
            for alpha in alphas:
                alpha = alpha.unsqueeze(2).expand_as(v)
                v_out = alpha*v
                v_out = v_out.sum(1)
                v_outs.append(v_out)
            v_out = torch.cat(v_outs, dim=1)
        else:
            alpha = alpha.expand_as(v)
            v_out = alpha*v
            v_out = v_out.sum(1)
        return v_out 
開發者ID:Cadene,項目名稱:block.bootstrap.pytorch,代碼行數:26,代碼來源:vqa_net.py

示例3: compute_kl_div

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def compute_kl_div(self):
        r"""Compute :math:`KL(q(z|c) \| p(z))`.

        Returns:
            float: :math:`KL(q(z|c) \| p(z))`.

        """
        prior = torch.distributions.Normal(
            torch.zeros(self._latent_dim).to(global_device()),
            torch.ones(self._latent_dim).to(global_device()))
        posteriors = [
            torch.distributions.Normal(mu, torch.sqrt(var)) for mu, var in zip(
                torch.unbind(self.z_means), torch.unbind(self.z_vars))
        ]
        kl_divs = [
            torch.distributions.kl.kl_divergence(post, prior)
            for post in posteriors
        ]
        kl_div_sum = torch.sum(torch.stack(kl_divs))
        return kl_div_sum 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:22,代碼來源:context_conditioned_policy.py

示例4: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def forward(self, x, state):
        c, h = state

        gates = self.gates(torch.cat([x, h], 1))

        if self.layer_norm is not None:
            combined = self.layer_norm(
                torch.reshape(gates, [-1, 4, self.output_size]))
        else:
            combined = torch.reshape(gates, [-1, 4, self.output_size])

        i, j, f, o = torch.unbind(combined, 1)
        i, f, o = torch.sigmoid(i), torch.sigmoid(f), torch.sigmoid(o)

        new_c = f * c + i * torch.tanh(j)

        if self.activation is None:
            # Do not use tanh activation
            new_h = o * new_c
        else:
            new_h = o * self.activation(new_c)

        return new_h, (new_c, new_h) 
開發者ID:XMUNLP,項目名稱:Tagger,代碼行數:25,代碼來源:recurrent.py

示例5: rotation_matrix_to_quaternion

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def rotation_matrix_to_quaternion(R): # [B,3,3]
	row0,row1,row2 = torch.unbind(R,dim=-2)
	R00,R01,R02 = torch.unbind(row0,dim=-1)
	R10,R11,R12 = torch.unbind(row1,dim=-1)
	R20,R21,R22 = torch.unbind(row2,dim=-1)
	t = R[...,0,0]+R[...,1,1]+R[...,2,2]
	r = (1+t).sqrt()
	qa = 0.5*r
	qb = (R21-R12).sign()*0.5*(1+R00-R11-R22).sqrt()
	qc = (R02-R20).sign()*0.5*(1-R00+R11-R22).sqrt()
	qd = (R10-R01).sign()*0.5*(1-R00-R11+R22).sqrt()
	q = torch.stack([qa,qb,qc,qd],dim=-1)
	for i,qi in enumerate(q):
		if torch.isnan(qi).any():
			print(i)
			K = torch.stack([torch.stack([R00-R11-R22,R10+R01,R20+R02,R12-R21],dim=-1),
							 torch.stack([R10+R01,R11-R00-R22,R21+R12,R20-R20],dim=-1),
							 torch.stack([R20+R02,R21+R12,R22-R00-R11,R01-R10],dim=-1),
							 torch.stack([R12-R21,R20-R02,R01-R10,R00+R11+R22],dim=-1)],dim=-2)/3.0
			K = K[i]
			eigval,eigvec = K.eig(eigenvectors=True)
			idx = eigval[:,0].argmax()
			V = eigvec[:,idx]
			q[i] = torch.stack([V[3],V[0],V[1],V[2]])
	return q 
開發者ID:chenhsuanlin,項目名稱:photometric-mesh-optim,代碼行數:27,代碼來源:pose.py

示例6: calc_f1_batch

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def calc_f1_batch(self, decoded_data, target_data):
        """
        update statics for f1 score.

        Parameters
        ----------
        decoded_data: ``torch.LongTensor``, required.
            the decoded best label index pathes.
        target_data:  ``torch.LongTensor``, required.
            the golden label index pathes.
        """
        batch_decoded = torch.unbind(decoded_data, 1)

        for decoded, target in zip(batch_decoded, target_data):
            length = len(target)
            best_path = decoded[:length]

            correct_labels_i, total_labels_i, gold_count_i, guess_count_i, overlap_count_i = self.eval_instance(best_path.numpy(), target)
            self.correct_labels += correct_labels_i
            self.total_labels += total_labels_i
            self.gold_count += gold_count_i
            self.guess_count += guess_count_i
            self.overlap_count += overlap_count_i 
開發者ID:LiyuanLucasLiu,項目名稱:Vanilla_NER,代碼行數:25,代碼來源:evaluator.py

示例7: calc_acc_batch

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def calc_acc_batch(self, decoded_data, target_data):
        """
        update statics for accuracy score.

        Parameters
        ----------
        decoded_data: ``torch.LongTensor``, required.
            the decoded best label index pathes.
        target_data:  ``torch.LongTensor``, required.
            the golden label index pathes.
        """
        batch_decoded = torch.unbind(decoded_data, 1)

        for decoded, target in zip(batch_decoded, target_data):
            
            # remove padding
            length = len(target)
            best_path = decoded[:length].numpy()

            self.total_labels += length
            self.correct_labels += np.sum(np.equal(best_path, gold)) 
開發者ID:LiyuanLucasLiu,項目名稱:Vanilla_NER,代碼行數:23,代碼來源:evaluator.py

示例8: batch_transform

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def batch_transform(batch, transform):
    """Applies a transform to a batch of samples.

    Keyword arguments:
    - batch (): a batch os samples
    - transform (callable): A function/transform to apply to ``batch``

    """

    # Convert the single channel label to RGB in tensor form
    # 1. torch.unbind removes the 0-dimension of "labels" and returns a tuple of
    # all slices along that dimension
    # 2. the transform is applied to each slice
    transf_slices = [transform(tensor) for tensor in torch.unbind(batch)]

    return torch.stack(transf_slices) 
開發者ID:davidtvs,項目名稱:PyTorch-ENet,代碼行數:18,代碼來源:utils.py

示例9: batch_transform

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def batch_transform(batch, transform):
    """Applies a transform to a batch of samples.

    Keyword arguments:
    - batch (): a batch os samples
    - transform (callable): A function/transform to apply to ``batch``

    """

    # Convert the single channel label to RGB in tensor form
    # 1. F.unbind removes the 0-dimension of "labels" and returns a tuple of
    # all slices along that dimension
    # 2. the transform is applied to each slice
    transf_slices = [transform(tensor) for tensor in F.unbind(batch)]

    return F.stack(transf_slices) 
開發者ID:superlxt,項目名稱:RPNet-Pytorch,代碼行數:18,代碼來源:utils.py

示例10: get_cached_data_loader

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"):
    data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn)

    xs = []
    ys = []
    for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
        with torch.no_grad():
            x = x.to(device)
            avg_rep = discriminator.avg_representation(x).cpu().detach()
            avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
            xs += avg_rep_list
            ys += y.cpu().numpy().tolist()

    data_loader = torch.utils.data.DataLoader(
        dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn
    )

    return data_loader 
開發者ID:bhoov,項目名稱:exbert,代碼行數:20,代碼來源:run_pplm_discrim_train.py

示例11: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def forward(self, q, v):
        alpha = self.process_attention(q, v)

        if self.mlp_glimpses > 0:
            alpha = self.linear0(alpha)
            alpha = F.relu(alpha)
            alpha = self.linear1(alpha)

        alpha = F.softmax(alpha, dim=1)

        if alpha.size(2) > 1:  # nb_glimpses > 1
            alphas = torch.unbind(alpha, dim=2)
            v_outs = []
            for alpha in alphas:
                alpha = alpha.unsqueeze(2).expand_as(v)
                v_out = alpha*v
                v_out = v_out.sum(1)
                v_outs.append(v_out)
            v_out = torch.cat(v_outs, dim=1)
        else:
            alpha = alpha.expand_as(v)
            v_out = alpha*v
            v_out = v_out.sum(1)
        return v_out 
開發者ID:linjieli222,項目名稱:VQA_ReGAT,代碼行數:26,代碼來源:fusion.py

示例12: transformImage

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def transformImage(opt,image,pMtrx):
	refMtrx = torch.from_numpy(opt.refMtrx).cuda()
	refMtrx = refMtrx.repeat(opt.batchSize,1,1)
	transMtrx = refMtrx.matmul(pMtrx)
	# warp the canonical coordinates
	X,Y = np.meshgrid(np.linspace(-1,1,opt.W),np.linspace(-1,1,opt.H))
	X,Y = X.flatten(),Y.flatten()
	XYhom = np.stack([X,Y,np.ones_like(X)],axis=1).T
	XYhom = np.tile(XYhom,[opt.batchSize,1,1]).astype(np.float32)
	XYhom = torch.from_numpy(XYhom).cuda()
	XYwarpHom = transMtrx.matmul(XYhom)
	XwarpHom,YwarpHom,ZwarpHom = torch.unbind(XYwarpHom,dim=1)
	Xwarp = (XwarpHom/(ZwarpHom+1e-8)).reshape(opt.batchSize,opt.H,opt.W)
	Ywarp = (YwarpHom/(ZwarpHom+1e-8)).reshape(opt.batchSize,opt.H,opt.W)
	grid = torch.stack([Xwarp,Ywarp],dim=-1)
	# sampling with bilinear interpolation
	imageWarp = torch.nn.functional.grid_sample(image,grid,mode="bilinear")
	return imageWarp 
開發者ID:chenhsuanlin,項目名稱:inverse-compositional-STN,代碼行數:20,代碼來源:warp.py

示例13: sentencewise_scores2paragraph_tokenwise_scores

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def sentencewise_scores2paragraph_tokenwise_scores(sentences_scores, sentences_mask):
    """
    # Input:
    # sentences_mask: (batch_size X num_sentences X sent_seq_len)
    # sentences_scores: (batch_size X num_sentences)

    # Output:
    # paragraph_tokenwise_scores: (batch_size X max_para_seq_len)
    """
    paragraph_tokenwise_scores = []
    for instance_sentences_scores, instance_sentences_mask in zip(torch.unbind(sentences_scores, dim=0),
                                                                  torch.unbind(sentences_mask, dim=0)):
        instance_paragraph_tokenwise_scores = torch.masked_select(instance_sentences_scores.unsqueeze(-1),
                                                                    instance_sentences_mask.byte())
        paragraph_tokenwise_scores.append(instance_paragraph_tokenwise_scores)
    paragraph_tokenwise_scores = torch.nn.utils.rnn.pad_sequence(paragraph_tokenwise_scores, batch_first=True)
    return paragraph_tokenwise_scores 
開發者ID:StonyBrookNLP,項目名稱:multee,代碼行數:19,代碼來源:util.py

示例14: get_cached_data_loader

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def get_cached_data_loader(dataset, batch_size, discriminator,
                           shuffle=False, device='cpu'):
    data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                              batch_size=batch_size,
                                              collate_fn=collate_fn)

    xs = []
    ys = []
    for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
        with torch.no_grad():
            x = x.to(device)
            avg_rep = discriminator.avg_representation(x).cpu().detach()
            avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
            xs += avg_rep_list
            ys += y.cpu().numpy().tolist()

    data_loader = torch.utils.data.DataLoader(
        dataset=Dataset(xs, ys),
        batch_size=batch_size,
        shuffle=shuffle,
        collate_fn=cached_collate_fn)

    return data_loader 
開發者ID:uber-research,項目名稱:PPLM,代碼行數:25,代碼來源:run_pplm_discrim_train.py

示例15: _assert_attributions

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import unbind [as 別名]
def _assert_attributions(
        self,
        model: Module,
        layer: Module,
        inputs: Tensor,
        baselines: Union[Tensor, Callable[..., Tensor]],
        neuron_ind: Union[int, tuple],
        n_samples: int = 5,
    ) -> None:
        ngs = NeuronGradientShap(model, layer)
        nig = NeuronIntegratedGradients(model, layer)
        attrs_gs = ngs.attribute(
            inputs, neuron_ind, baselines=baselines, n_samples=n_samples, stdevs=0.09
        )

        if callable(baselines):
            baselines = baselines(inputs)

        attrs_ig = []
        for baseline in torch.unbind(baselines):
            attrs_ig.append(
                nig.attribute(inputs, neuron_ind, baselines=baseline.unsqueeze(0))
            )
        combined_attrs_ig = torch.stack(attrs_ig, dim=0).mean(dim=0)
        assertTensorAlmostEqual(self, attrs_gs, combined_attrs_ig, 0.5) 
開發者ID:pytorch,項目名稱:captum,代碼行數:27,代碼來源:test_neuron_gradient_shap.py


注:本文中的torch.unbind方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。