當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.svd方法代碼示例

本文整理匯總了Python中torch.svd方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.svd方法的具體用法?Python torch.svd怎麽用?Python torch.svd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.svd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: euclidean_stiefel_case

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def euclidean_stiefel_case():
    torch.manual_seed(42)
    shape = manifold_shapes[geoopt.manifolds.EuclideanStiefel]
    ex = torch.randn(*shape, dtype=torch.float64)
    ev = torch.randn(*shape, dtype=torch.float64)
    u, _, v = torch.svd(ex)
    x = u @ v.t()
    nonsym = x.t() @ ev
    v = ev - x @ (nonsym + nonsym.t()) / 2

    manifold = geoopt.manifolds.EuclideanStiefel()
    x = geoopt.ManifoldTensor(x, manifold=manifold)
    case = UnaryCase(shape, x, ex, v, ev, manifold)
    yield case
    manifold = geoopt.manifolds.EuclideanStiefelExact()
    x = geoopt.ManifoldTensor(x, manifold=manifold)
    case = UnaryCase(shape, x, ex, v, ev, manifold)
    yield case 
開發者ID:geoopt,項目名稱:geoopt,代碼行數:20,代碼來源:test_manifold_basic.py

示例2: regularizer_orth2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def regularizer_orth2(m):
    """
    # ----------------------------------------
    # Applies regularization to the training by performing the
    # orthogonalization technique described in the paper
    # This function is to be called by the torch.nn.Module.apply() method,
    # which applies svd_orthogonalization() to every layer of the model.
    # usage: net.apply(regularizer_orth2)
    # ----------------------------------------
    """
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        w = m.weight.data.clone()
        c_out, c_in, f1, f2 = w.size()
        # dtype = m.weight.data.type()
        w = w.permute(2, 3, 1, 0).contiguous().view(f1*f2*c_in, c_out)
        u, s, v = torch.svd(w)
        s_mean = s.mean()
        s[s > 1.5*s_mean] = s[s > 1.5*s_mean] - 1e-4
        s[s < 0.5*s_mean] = s[s < 0.5*s_mean] + 1e-4
        w = torch.mm(torch.mm(u, torch.diag(s)), v.t())
        m.weight.data = w.view(f1, f2, c_in, c_out).permute(3, 2, 0, 1)  # .type(dtype)
    else:
        pass 
開發者ID:cszn,項目名稱:KAIR,代碼行數:26,代碼來源:utils_regularizers.py

示例3: zca_matrix

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def zca_matrix(data_tensor):
    """
    Helper function: compute ZCA whitening matrix across a dataset ~ (N, C, H, W).
    """
    # 1. flatten dataset:
    X = data_tensor.view(data_tensor.shape[0], -1)
    
    # 2. zero-center the matrix:
    X = rescale(X, -1., 1.)
    
    # 3. compute covariances:
    cov = torch.t(X) @ X

    # 4. compute ZCA(X) == U @ (diag(1/S)) @ torch.t(V) where U, S, V = SVD(cov):
    U, S, V = torch.svd(cov)
    return (U @ torch.diag(torch.reciprocal(S)) @ torch.t(V)) 
開發者ID:paultsw,項目名稱:nice_pytorch,代碼行數:18,代碼來源:make_datasets.py

示例4: estimate_pose

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def estimate_pose(self, pt0, pt1):
        pconf2 = self.pconf.view(1, self.num_key, 1)
        cent0 = torch.sum(pt0 * pconf2, dim=1).repeat(1, self.num_key, 1).contiguous()
        cent1 = torch.sum(pt1 * pconf2, dim=1).repeat(1, self.num_key, 1).contiguous()

        diag_mat = torch.diag(self.pconf).unsqueeze(0)
        x = (pt0 - cent0).transpose(2, 1).contiguous()
        y = pt1 - cent1

        pred_t = cent1 - cent0

        cov = torch.bmm(torch.bmm(x, diag_mat), y).contiguous().squeeze(0)

        u, _, v = torch.svd(cov)

        u = u.transpose(1, 0).contiguous()
        d = torch.det(torch.mm(v, u)).contiguous().view(1, 1, 1).contiguous()
        u = u.transpose(1, 0).contiguous().unsqueeze(0)

        ud = torch.cat((u[:, :, :-1], u[:, :, -1:] * d), dim=2)
        v = v.transpose(1, 0).contiguous().unsqueeze(0)

        pred_r = torch.bmm(ud, v).transpose(2, 1).contiguous()
        return pred_r, pred_t[:, 0, :].view(1, 3) 
開發者ID:j96w,項目名稱:6-PACK,代碼行數:26,代碼來源:loss.py

示例5: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def __init__(self, dims_in, correction_interval=256, clamp=5.):
        super().__init__()
        self.width = dims_in[0][0]
        self.clamp = clamp

        self.correction_interval = correction_interval
        self.back_counter = np.random.randint(0, correction_interval) // 2

        self.weights = torch.randn(self.width, self.width)
        self.weights = self.weights + self.weights.t()
        self.weights, S, V = torch.svd(self.weights)

        self.weights = nn.Parameter(self.weights)

        self.bias = nn.Parameter(0.05 * torch.randn(self.width))
        self.scaling = nn.Parameter(0.02 * torch.randn(self.width))

        self.register_backward_hook(correct_weights) 
開發者ID:VLL-HD,項目名稱:FrEIA,代碼行數:20,代碼來源:orthogonal.py

示例6: spectral_restricted_isometry_property_regularization

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def spectral_restricted_isometry_property_regularization(weights, config):
    """Requires that every set of columns of the weights, with cardinality no
    larger than k, shall behave like an orthogonal system.

    Also called SRIP.

    References:
        * Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?
          Bansal et al.
          NeurIPS 2018

    :param weights: Learned parameters of shape (n_classes, n_features).
    :return: A float scalar loss.
    """
    wTw = torch.mm(weights.t(), weights)
    x = wTw - torch.eye(wTw.shape[0]).to(weights.device)

    _, s, _ = torch.svd(x)

    loss = s[0]
    return config["factor"] * loss 
開發者ID:arthurdouillard,項目名稱:incremental_learning.pytorch,代碼行數:23,代碼來源:regularizations.py

示例7: init_projection_matrix

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def init_projection_matrix(self, x):
        # Set if using projection matrix
        self.params.use_projection_matrix = self.params.get('use_projection_matrix', True)

        if self.params.use_projection_matrix:
            self.compressed_dim = self.fparams.attribute('compressed_dim', None)

            proj_init_method = self.params.get('proj_init_method', 'pca')
            if proj_init_method == 'pca':
                x_mat = TensorList([e.permute(1, 0, 2, 3).reshape(e.shape[1], -1).clone() for e in x])
                x_mat -= x_mat.mean(dim=1, keepdim=True)
                cov_x = x_mat @ x_mat.t()
                self.projection_matrix = TensorList(
                    [None if cdim is None else torch.svd(C)[0][:, :cdim].t().unsqueeze(-1).unsqueeze(-1).clone() for C, cdim in
                     zip(cov_x, self.compressed_dim)])
            elif proj_init_method == 'randn':
                self.projection_matrix = TensorList(
                    [None if cdim is None else ex.new_zeros(cdim,ex.shape[1],1,1).normal_(0,1/math.sqrt(ex.shape[1])) for ex, cdim in
                     zip(x, self.compressed_dim)])
        else:
            self.compressed_dim = x.size(1)
            self.projection_matrix = TensorList([None]*len(x)) 
開發者ID:visionml,項目名稱:pytracking,代碼行數:24,代碼來源:atom.py

示例8: whiten

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def whiten(cF):
    cFSize = cF.size()
    c_mean = torch.mean(cF,1) # c x (h x w)
    c_mean = c_mean.unsqueeze(1).expand_as(cF)
    cF = cF - c_mean

    contentConv = torch.mm(cF,cF.t()).div(cFSize[1]-1) + torch.eye(cFSize[0]).double()
    c_u,c_e,c_v = torch.svd(contentConv,some=False)

    k_c = cFSize[0]
    for i in range(cFSize[0]):
        if c_e[i] < 0.00001:
            k_c = i
            break

    c_d = (c_e[0:k_c]).pow(-0.5)
    step1 = torch.mm(c_v[:,0:k_c],torch.diag(c_d))
    step2 = torch.mm(step1,(c_v[:,0:k_c].t()))
    whiten_cF = torch.mm(step2,cF)
    return whiten_cF 
開發者ID:sunshineatnoon,項目名稱:LinearStyleTransfer,代碼行數:22,代碼來源:utils.py

示例9: _normalize_one

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def _normalize_one(self, mat):
        # U, S, V = torch.svd(A) returns the singular value
        # decomposition of a real matrix A of size (n x m) such that A=USV′.
        # Irrespective of the original strides, the returned matrix U will
        # be transposed, i.e. with strides (1, n) instead of (n, 1).

        # pytorch has native SVD function but not determinant...
        # U, _, V = mat.squeeze().svd()
        # S = torch.eye(self.dim)
        # if U.is_cuda:
        #     S = S.cuda()
        # S[self.dim - 1, self.dim - 1] = float(np.linalg.det(U.cpu().numpy()) *
        #                                       np.linalg.det(V.cpu().numpy()))
        # mat_normalized = U.mm(S).mm(V.t_())

        # pytorch SVD seems to be inaccurate, so just move to numpy immediately
        mat_cpu = mat.detach().cpu().numpy().squeeze()
        U, _, V = np.linalg.svd(mat_cpu, full_matrices=False)
        S = np.eye(self.dim)
        S[self.dim - 1, self.dim - 1] = np.linalg.det(U) * np.linalg.det(V)

        mat_normalized = mat.__class__(U.dot(S).dot(V))

        mat.copy_(mat_normalized)
        return mat 
開發者ID:utiasSTARS,項目名稱:liegroups,代碼行數:27,代碼來源:_base.py

示例10: rigid_transform_3d_pytorch

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def rigid_transform_3d_pytorch(p1, p2):
    center_p1 = torch.mean(p1, dim=0, keepdim=True)
    center_p2 = torch.mean(p2, dim=0, keepdim=True)

    pp1 = p1 - center_p1
    pp2 = p2 - center_p2

    h = torch.mm(pp1.t(), pp2)
    u, _, v = torch.svd(h)
    r = torch.mm(v.t(), u.t())

    # reflection
    if np.linalg.det(r.cpu().numpy()) < 0:
        v[2, :] *= -1
        r = torch.mm(v.t(), u.t())

    t = torch.mm(-r, center_p1.t()) + center_p2.t()

    return r, t 
開發者ID:icemiliang,項目名稱:pyvot,代碼行數:21,代碼來源:utils.py

示例11: rigid_transform_3d_numpy

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def rigid_transform_3d_numpy(p1, p2):
    center_p1 = np.mean(p1, axis=0, keepdims=True)
    center_p2 = np.mean(p2, axis=0, keepdims=True)

    pp1 = p1 - center_p1
    pp2 = p2 - center_p2

    h = np.matmul(pp1.T, pp2)
    u, _, v = np.linalg.svd(h)
    r = np.matmul(v.T, u.T)

    # reflection
    if np.linalg.det(r) < 0:
        v[2, :] *= -1
        r = np.matmul(v.T, u.T)

    t = np.matmul(-r, center_p1.T) + center_p2.T

    return r, t 
開發者ID:icemiliang,項目名稱:pyvot,代碼行數:21,代碼來源:utils.py

示例12: finalize

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def finalize(self):
        """
        Finalize training with LU factorization or Pseudo-inverse
        """
        # Average
        self.R = self.R / self.n_samples

        # SVF
        (U, S, V) = torch.svd(self.R)

        # Compute new singular values
        Snew = torch.mm(torch.diag(S), torch.inverse(torch.diag(S) + math.pow(self.aperture, -2) * torch.eye(self.input_dim, dtype=self.dtype)))

        # Apply new SVs to get the conceptor
        self.C.data = torch.mm(torch.mm(U, Snew), U.t()).data

        # Not in training mode anymore
        self.train(False)
    # end finalize

    # Set conceptor 
開發者ID:nschaetti,項目名稱:EchoTorch,代碼行數:23,代碼來源:Conceptor.py

示例13: similarity

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def similarity(C1, C2):
        """
        Similarity between two conceptors
        :param C1:
        :param C2:
        :return:
        """
        # Compute singular values
        Ua, Sa, _ = torch.svd(C1.get_C())
        Ub, Sb, _ = torch.svd(C2.get_C())

        # Measure
        return generalized_squared_cosine(Sa, Ua, Sb, Ub)
    # end similarity

    ###############################################
    # OPERATORS
    ###############################################

    # Similarity with another conceptor 
開發者ID:nschaetti,項目名稱:EchoTorch,代碼行數:22,代碼來源:Conceptor.py

示例14: sim

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def sim(self, cb, measure='gsc'):
        """
        Similarity with another conceptor
        :param cb:
        :return:
        """
        # Compute singular values
        Ua, Sa, _ = torch.svd(self.C)
        Ub, Sb, _ = torch.svd(cb.get_C())

        # Measure
        if measure == 'gsc':
            return generalized_squared_cosine(Sa, Ua, Sb, Ub)
        # end if
    # end sim

    # Positive evidence 
開發者ID:nschaetti,項目名稱:EchoTorch,代碼行數:19,代碼來源:Conceptor.py

示例15: compute_A_SV

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import svd [as 別名]
def compute_A_SV(conceptors):
        """
        Get singular values of A
        :param conceptors:
        :return:
        """
        # A (OR of all conceptors)
        A = ConceptorPool.compute_A(conceptors)

        # Compute SVD
        _, S, _ = torch.svd(A.get_C())

        return S
    # end compute_A_SV

    # Compute A (OR of all conceptors 
開發者ID:nschaetti,項目名稱:EchoTorch,代碼行數:18,代碼來源:ConceptorPool.py


注:本文中的torch.svd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。