本文整理匯總了Python中torch.size方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.size方法的具體用法?Python torch.size怎麽用?Python torch.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: focal_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def focal_loss(self, inputs, targets):
'''Focal loss.
mean of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
'''
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P*class_mask).sum(1).view(-1,1)
log_p = probs.log()
batch_loss = -alpha*(torch.pow((1-probs), self.gamma))*log_p
loss = batch_loss.mean()
return loss
示例2: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def forward(self,input_gradients, prev_state):
if USE_CUDA:
input_gradients = input_gradients.cuda()
#pytorch requires the `torch.nn.lstm`'s input as(1,batchsize,input_dim)
# original gradient.size()=torch.size[5] ->[1,1,5]
gradients = input_gradients.unsqueeze(0)
if self.preprocess_flag == True:
gradients = self.LogAndSign_Preprocess_Gradient(gradients)
update , next_state = self.Output_Gradient_Increment_And_Update_LSTM_Hidden_State(gradients , prev_state)
# Squeeze to make it a single batch again.[1,1,5]->[5]
update = update.squeeze().squeeze()
return update , next_state
################# 優化器模型參數 ##############################
################# Parameters of optimizer ##############################
示例3: semantic_segmentation_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def semantic_segmentation_loss(self, segment_data, mask_t, class_t, interpolation_mode='bilinear'):
# Note num_classes here is without the background class so cfg.num_classes-1
batch_size, num_classes, mask_h, mask_w = segment_data.size()
loss_s = 0
for idx in range(batch_size):
cur_segment = segment_data[idx]
cur_class_t = class_t[idx]
with torch.no_grad():
downsampled_masks = F.interpolate(mask_t[idx].unsqueeze(0), (mask_h, mask_w),
mode=interpolation_mode, align_corners=False).squeeze(0)
downsampled_masks = downsampled_masks.gt(0.5).float()
# Construct Semantic Segmentation
segment_t = torch.zeros_like(cur_segment, requires_grad=False)
for obj_idx in range(downsampled_masks.size(0)):
segment_t[cur_class_t[obj_idx]] = torch.max(segment_t[cur_class_t[obj_idx]], downsampled_masks[obj_idx])
loss_s += F.binary_cross_entropy_with_logits(cur_segment, segment_t, reduction='sum')
return loss_s / mask_h / mask_w * cfg.semantic_segmentation_alpha
示例4: coeff_diversity_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def coeff_diversity_loss(self, coeffs, instance_t):
"""
coeffs should be size [num_pos, num_coeffs]
instance_t should be size [num_pos] and be values from 0 to num_instances-1
"""
num_pos = coeffs.size(0)
instance_t = instance_t.view(-1) # juuuust to make sure
coeffs_norm = F.normalize(coeffs, dim=1)
cos_sim = coeffs_norm @ coeffs_norm.t()
inst_eq = (instance_t[:, None].expand_as(cos_sim) == instance_t[None, :].expand_as(cos_sim)).float()
# Rescale to be between 0 and 1
cos_sim = (cos_sim + 1) / 2
# If they're the same instance, use cosine distance, else use cosine similarity
loss = (1 - cos_sim) * inst_eq + cos_sim * (1 - inst_eq)
# Only divide by num_pos once because we're summing over a num_pos x num_pos tensor
# and all the losses will be divided by num_pos at the end, so just one extra time.
return cfg.mask_proto_coeff_diversity_alpha * loss.sum() / num_pos
示例5: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def forward(self, inputs, targets):
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs, dim=1)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P * class_mask).sum(1).view(-1, 1)
log_p = probs.log()
batch_loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss
示例6: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def __init__(self, cfg, num_classes):
super(HSDMultiBoxLoss, self).__init__()
self.cfg = cfg
self.size = cfg.MODEL.SIZE
if self.size == '300':
size_cfg = cfg.SMALL
else:
size_cfg = cfg.BIG
self.variance = size_cfg.VARIANCE
self.num_classes = num_classes
self.threshold = cfg.TRAIN.OVERLAP
self.OHEM = cfg.TRAIN.OHEM
self.negpos_ratio = cfg.TRAIN.NEG_RATIO
self.object_score = cfg.MODEL.OBJECT_SCORE
self.variance = size_cfg.VARIANCE
if cfg.TRAIN.FOCAL_LOSS:
if cfg.TRAIN.FOCAL_LOSS_TYPE == 'SOFTMAX':
self.focaloss = FocalLossSoftmax(
self.num_classes, gamma=2, size_average=False)
else:
self.focaloss = FocalLossSigmoid()
示例7: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def __init__(self, cfg):
super(MultiBoxLoss, self).__init__()
self.cfg = cfg
self.size = cfg.MODEL.SIZE
if self.size == '300':
size_cfg = cfg.SMALL
else:
size_cfg = cfg.BIG
self.variance = size_cfg.VARIANCE
self.num_classes = cfg.MODEL.NUM_CLASSES
self.threshold = cfg.TRAIN.OVERLAP
self.OHEM = cfg.TRAIN.OHEM
self.negpos_ratio = cfg.TRAIN.NEG_RATIO
self.variance = size_cfg.VARIANCE
if cfg.TRAIN.FOCAL_LOSS:
if cfg.TRAIN.FOCAL_LOSS_TYPE == 'SOFTMAX':
self.focaloss = FocalLossSoftmax(
self.num_classes, gamma=2, size_average=False)
else:
self.focaloss = FocalLossSigmoid()
示例8: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def __init__(self, cfg, num_classes):
super(RefineMultiBoxLoss, self).__init__()
self.cfg = cfg
self.size = cfg.MODEL.SIZE
if self.size == '300':
size_cfg = cfg.SMALL
else:
size_cfg = cfg.BIG
self.variance = size_cfg.VARIANCE
self.num_classes = num_classes
self.threshold = cfg.TRAIN.OVERLAP
self.OHEM = cfg.TRAIN.OHEM
self.negpos_ratio = cfg.TRAIN.NEG_RATIO
self.object_score = cfg.MODEL.OBJECT_SCORE
self.variance = size_cfg.VARIANCE
if cfg.TRAIN.FOCAL_LOSS:
if cfg.TRAIN.FOCAL_LOSS_TYPE == 'SOFTMAX':
self.focaloss = FocalLossSoftmax(
self.num_classes, gamma=2, size_average=False)
else:
self.focaloss = FocalLossSigmoid()
示例9: _batch2torch
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def _batch2torch(self, batch, batch_size):
""" List of transitions -> Batch of transitions -> pytorch tensors.
Returns:
states: torch.size([batch_size, hist_len, w, h])
a/r/d: torch.size([batch_size, 1])
"""
# check-out pytorch dqn tutorial.
# (t1, t2, ... tn) -> t((s1, s2, ..., sn), (a1, a2, ... an) ...)
batch = BatchTransition(*zip(*batch))
# lists to tensors
state_batch = torch.cat(batch.state, 0).type(self.dtype.FT) / 255
action_batch = self.dtype.LT(batch.action).unsqueeze(1)
reward_batch = self.dtype.FT(batch.reward).unsqueeze(1)
next_state_batch = torch.cat(batch.state_, 0).type(self.dtype.FT) / 255
# [False, False, True, False] -> [1, 1, 0, 1]::ByteTensor
mask = 1 - self.dtype.BT(batch.done).unsqueeze(1)
return [batch_size, state_batch, action_batch, reward_batch,
next_state_batch, mask]
示例10: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def forward(self,input_gradients, prev_state):
if USE_CUDA:
input_gradients = input_gradients.cuda()
#LSTM的輸入為梯度,pytorch要求torch.nn.lstm的輸入為(1,batchsize,input_dim)
#原gradient.size()=torch.size[5] ->[1,1,5]
gradients = input_gradients.unsqueeze(0)
if self.preprocess_flag == True:
gradients = self.LogAndSign_Preprocess_Gradient(gradients)
update , next_state = self.Output_Gradient_Increment_And_Update_LSTM_Hidden_State(gradients , prev_state)
# Squeeze to make it a single batch again.[1,1,5]->[5]
update = update.squeeze().squeeze()
return update , next_state
示例11: _get_value_info
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def _get_value_info(_dict):
# given a dict value, return information about this dict's value. Return list of str
strs = []
for key, value in _dict.items():
_str = ''
if isinstance(value, torch.Tensor):
_str += "\t{}: (1)type:torch.Tensor (2)dtype:{}, (3)shape:{} ".format(key,
value.dtype, value.size())
elif isinstance(value, np.ndarray):
_str += "\t{}: (1)type:numpy.ndarray (2)dtype:{}, (3)shape:{} ".format(key,
value.dtype, value.shape)
else:
_str += "\t{}: type:{}".format(key, type(value))
strs.append(_str)
return strs
示例12: focal_conf_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def focal_conf_loss(self, conf_data, conf_t):
"""
Focal loss as described in https://arxiv.org/pdf/1708.02002.pdf
Adapted from https://github.com/clcarwin/focal_loss_pytorch/blob/master/focalloss.py
Note that this uses softmax and not the original sigmoid from the paper.
"""
conf_t = conf_t.view(-1) # [batch_size*num_priors]
conf_data = conf_data.view(-1, conf_data.size(-1)) # [batch_size*num_priors, num_classes]
# Ignore neutral samples (class < 0)
keep = (conf_t >= 0).float()
conf_t[conf_t < 0] = 0 # so that gather doesn't drum up a fuss
logpt = F.log_softmax(conf_data, dim=-1)
logpt = logpt.gather(1, conf_t.unsqueeze(-1))
logpt = logpt.view(-1)
pt = logpt.exp()
# I adapted the alpha_t calculation here from
# https://github.com/pytorch/pytorch/blob/master/modules/detectron/softmax_focal_loss_op.cu
# You'd think you want all the alphas to sum to one, but in the original implementation they
# just give background an alpha of 1-alpha and each forground an alpha of alpha.
background = (conf_t == 0).float()
at = (1 - cfg.focal_loss_alpha) * background + cfg.focal_loss_alpha * (1 - background)
loss = -at * (1 - pt) ** cfg.focal_loss_gamma * logpt
# See comment above for keep
return cfg.conf_alpha * (loss * keep).sum()
示例13: focal_conf_sigmoid_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def focal_conf_sigmoid_loss(self, conf_data, conf_t):
"""
Focal loss but using sigmoid like the original paper.
Note: To make things mesh easier, the network still predicts 81 class confidences in this mode.
Because retinanet originally only predicts 80, we simply just don't use conf_data[..., 0]
"""
num_classes = conf_data.size(-1)
conf_t = conf_t.view(-1) # [batch_size*num_priors]
conf_data = conf_data.view(-1, num_classes) # [batch_size*num_priors, num_classes]
# Ignore neutral samples (class < 0)
keep = (conf_t >= 0).float()
conf_t[conf_t < 0] = 0 # can't mask with -1, so filter that out
# Compute a one-hot embedding of conf_t
# From https://github.com/kuangliu/pytorch-retinanet/blob/master/utils.py
conf_one_t = torch.eye(num_classes, device=conf_t.get_device())[conf_t]
conf_pm_t = conf_one_t * 2 - 1 # -1 if background, +1 if forground for specific class
logpt = F.logsigmoid(conf_data * conf_pm_t) # note: 1 - sigmoid(x) = sigmoid(-x)
pt = logpt.exp()
at = cfg.focal_loss_alpha * conf_one_t + (1 - cfg.focal_loss_alpha) * (1 - conf_one_t)
at[..., 0] = 0 # Set alpha for the background class to 0 because sigmoid focal loss doesn't use it
loss = -at * (1 - pt) ** cfg.focal_loss_gamma * logpt
loss = keep * loss.sum(dim=-1)
return cfg.conf_alpha * loss.sum()
示例14: focal_conf_objectness_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def focal_conf_objectness_loss(self, conf_data, conf_t):
"""
Instead of using softmax, use class[0] to be the objectness score and do sigmoid focal loss on that.
Then for the rest of the classes, softmax them and apply CE for only the positive examples.
If class[0] = 1 implies forground and class[0] = 0 implies background then you achieve something
similar during test-time to softmax by setting class[1:] = softmax(class[1:]) * class[0] and invert class[0].
"""
conf_t = conf_t.view(-1) # [batch_size*num_priors]
conf_data = conf_data.view(-1, conf_data.size(-1)) # [batch_size*num_priors, num_classes]
# Ignore neutral samples (class < 0)
keep = (conf_t >= 0).float()
conf_t[conf_t < 0] = 0 # so that gather doesn't drum up a fuss
background = (conf_t == 0).float()
at = (1 - cfg.focal_loss_alpha) * background + cfg.focal_loss_alpha * (1 - background)
logpt = F.logsigmoid(conf_data[:, 0]) * (1 - background) + F.logsigmoid(-conf_data[:, 0]) * background
pt = logpt.exp()
obj_loss = -at * (1 - pt) ** cfg.focal_loss_gamma * logpt
# All that was the objectiveness loss--now time for the class confidence loss
pos_mask = conf_t > 0
conf_data_pos = (conf_data[:, 1:])[pos_mask] # Now this has just 80 classes
conf_t_pos = conf_t[pos_mask] - 1 # So subtract 1 here
class_loss = F.cross_entropy(conf_data_pos, conf_t_pos, reduction='sum')
return cfg.conf_alpha * (class_loss + (obj_loss * keep).sum())
示例15: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import size [as 別名]
def __init__(self, num_classes, size, overlap_thresh, prior_for_matching,
bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
use_gpu=True):
super(MultiBoxLoss, self).__init__()
self.use_gpu = use_gpu
self.num_classes = num_classes
self.threshold = overlap_thresh
self.background_label = bkg_label
self.encode_target = encode_target
self.use_prior_for_matching = prior_for_matching
self.do_neg_mining = neg_mining
self.negpos_ratio = neg_pos
self.neg_overlap = neg_overlap
cfg = v[str(size)]
self.variance = cfg['variance']