當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.sign方法代碼示例

本文整理匯總了Python中torch.sign方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.sign方法的具體用法?Python torch.sign怎麽用?Python torch.sign使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.sign方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mu_law_encoding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def mu_law_encoding(
        x: Tensor,
        quantization_channels: int
) -> Tensor:
    r"""Encode signal based on mu-law companding.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This algorithm assumes the signal has been scaled to between -1 and 1 and
    returns a signal encoded with values from 0 to quantization_channels - 1.

    Args:
        x (Tensor): Input tensor
        quantization_channels (int): Number of channels

    Returns:
        Tensor: Input after mu-law encoding
    """
    mu = quantization_channels - 1.0
    if not x.is_floating_point():
        x = x.to(torch.float)
    mu = torch.tensor(mu, dtype=x.dtype)
    x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
    x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
    return x_mu 
開發者ID:pytorch,項目名稱:audio,代碼行數:26,代碼來源:functional.py

示例2: mu_law_decoding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def mu_law_decoding(
        x_mu: Tensor,
        quantization_channels: int
) -> Tensor:
    r"""Decode mu-law encoded signal.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This expects an input with values between 0 and quantization_channels - 1
    and returns a signal scaled between -1 and 1.

    Args:
        x_mu (Tensor): Input tensor
        quantization_channels (int): Number of channels

    Returns:
        Tensor: Input after mu-law decoding
    """
    mu = quantization_channels - 1.0
    if not x_mu.is_floating_point():
        x_mu = x_mu.to(torch.float)
    mu = torch.tensor(mu, dtype=x_mu.dtype)
    x = ((x_mu) / mu) * 2 - 1.0
    x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
    return x 
開發者ID:pytorch,項目名稱:audio,代碼行數:26,代碼來源:functional.py

示例3: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def __init__(self,in_channel):
        super(InvConv,self).__init__()

        weight=np.random.randn(in_channel,in_channel)
        q,_=linalg.qr(weight)
        w_p,w_l,w_u=linalg.lu(q.astype(np.float32))
        w_s=np.diag(w_u)
        w_u=np.triu(w_u,1)
        u_mask=np.triu(np.ones_like(w_u),1)
        l_mask=u_mask.T

        self.register_buffer('w_p',torch.from_numpy(w_p))
        self.register_buffer('u_mask',torch.from_numpy(u_mask))
        self.register_buffer('l_mask',torch.from_numpy(l_mask))
        self.register_buffer('l_eye',torch.eye(l_mask.shape[0]))
        self.register_buffer('s_sign',torch.sign(torch.from_numpy(w_s)))
        self.w_l=torch.nn.Parameter(torch.from_numpy(w_l))
        self.w_s=torch.nn.Parameter(torch.log(1e-7+torch.abs(torch.from_numpy(w_s))))
        self.w_u=torch.nn.Parameter(torch.from_numpy(w_u))

        self.weight=None
        self.invweight=None

        return 
開發者ID:joansj,項目名稱:blow,代碼行數:26,代碼來源:blow.py

示例4: lp_pool2d

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
    # type: (Tensor, float, int, Optional[BroadcastingList2[int]], bool) -> Tensor
    r"""Applies a 2D power-average pooling over an input signal composed of
    several input planes. If the sum of all inputs to the power of `p` is
    zero, the gradient is set to zero as well.

    See :class:`~torch.nn.LPPool2d` for details.
    """
    kw, kh = utils._pair(kernel_size)
    if stride is not None:
        stride = torch.jit._unwrap_optional(stride)
        out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
    else:
        out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)

    return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1. / norm_type) 
開發者ID:MagicChuyi,項目名稱:SlowFast-Network-pytorch,代碼行數:18,代碼來源:functional.py

示例5: BPDA_attack

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def BPDA_attack(image,target, model, step_size = 1., iterations = 10, linf=False, transform_func=identity_transform):
    target = label2tensor(target)
    adv = image.detach().numpy()
    adv = torch.from_numpy(adv)
    adv.requires_grad_()
    for _ in range(iterations):
        adv_def = transform_func(adv)
        adv_def.requires_grad_()
        l2 = nn.MSELoss()
        loss = l2(0, adv_def)
        loss.backward()
        g = get_cw_grad(adv_def, image, target, model)
        if linf:
            g = torch.sign(g)
        print(g.numpy().sum())
        adv = adv.detach().numpy() - step_size * g.numpy()
        adv = clip_bound(adv)
        adv = torch.from_numpy(adv)
        adv.requires_grad_()
        if linf:
            print('label', torch.argmax(model(adv)), 'linf', torch.max(torch.abs(adv - image)).detach().numpy())
        else:
            print('label', torch.argmax(model(adv)), 'l2', l2_norm(adv, image))
    return adv.detach().numpy() 
開發者ID:DSE-MSU,項目名稱:DeepRobust,代碼行數:26,代碼來源:BPDA.py

示例6: fgsm

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def fgsm(model, data, target, eps, cuda = True):
    """Generate an adversarial pertubation using the fast gradient sign method.

    Args:
        data: input image to perturb
    """
    model.eval()
    if cuda:
        data, target = data.cuda(), target.cuda()
    data.requires_grad = True
    model.zero_grad()
    output = model(data)
    loss = F.cross_entropy(output, target)
    loss.backward(create_graph = False)
    pertubation = eps * torch.sign(data.grad.data)
    x_fgsm = data.data + pertubation
    X_adv = torch.clamp(x_fgsm, torch.min(data.data), torch.max(data.data))

    return X_adv.cpu() 
開發者ID:amirgholami,項目名稱:HessianFlow,代碼行數:21,代碼來源:optm_utils.py

示例7: _vf_unscale

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def _vf_unscale(self, scaled_x):
        """Computes the inverse of _vf_scale(x), if vf-rescaling is enabled"""
        if not self.vf_scale_epsilon:
            return scaled_x

        # We need double() otherwise we lose too much precision for low eps
        # values such as 1e-3, due to the eps**2 terms
        scaled_x = scaled_x.double()
        abs_scaled_x = torch.abs(scaled_x)
        eps = self.vf_scale_epsilon
        # TODO: Can this be simplified somehow?
        x = abs_scaled_x / eps - (
                (1 / (2. * (eps**2))) *
                torch.sqrt(
                    4 * self.vf_scale_epsilon*abs_scaled_x +
                    (2. * eps + 1)**2)
            ) + \
            (2. * eps + 1) / (2. * (eps ** 2))
        x *= torch.sign(scaled_x)

        # SANITY CHECK to make sure the inverse is working, enable only to
        # test this function
        # assert(torch.all(torch.abs(scaled_x - self._vf_scale(x))<1e-5)), ("_vf_unscale() sanity failed:",(scaled_x, self._vf_scale(x)),(scaled_x == self._vf_scale(x)))

        return x.float() 
開發者ID:opherlieber,項目名稱:rltime,代碼行數:27,代碼來源:torch_trainer.py

示例8: prune_sign_change

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def prune_sign_change(self,reinitialize_unused_to_zero = True,enable_print = False):
        W_flat = self.s_tensor.data.view(-1)

        new_tensor_sign = torch.sign(W_flat)
        mask_flat = self.mask.view(-1)        
        
        mask_indices = torch.nonzero(mask_flat > 0.5).view(-1)
        
        sign_change_indices = mask_indices[((new_tensor_sign[mask_indices] * self.tensor_sign[mask_indices].to(new_tensor_sign.device)) < -0.5).nonzero().view(-1)]
        
        mask_flat[sign_change_indices] = 0
        self.reinitialize_unused(reinitialize_unused_to_zero)

        cutoff = sign_change_indices.numel()
        
        if enable_print:
            print('pruned {}  connections'.format(cutoff))
        if self.grown_indices is not None and enable_print:
            overlap = np.intersect1d(sign_change_indices.cpu().numpy(),self.grown_indices.cpu().numpy())
            print('pruned {} ({} %) just grown weights'.format(overlap.size,overlap.size * 100.0 / self.grown_indices.size(0) if self.grown_indices.size(0) > 0  else 0.0))
        
        self.tensor_sign = new_tensor_sign
        return sign_change_indices 
開發者ID:IntelAI,項目名稱:dynamic-reparameterization,代碼行數:25,代碼來源:parameterized_tensors.py

示例9: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def forward(self, input):
        if not self.training:
            return F.linear(input, self.weight, self.bias)

        torch.randn(self.epsilon_input.size(), out=self.epsilon_input)
        torch.randn(self.epsilon_output.size(), out=self.epsilon_output)

        func = lambda x: torch.sign(x) * torch.sqrt(torch.abs(x))
        eps_in = func(self.epsilon_input)
        eps_out = func(self.epsilon_output)

        bias = self.bias
        if bias is not None:
            bias = bias + self.sigma_bias * eps_out.t()
        noise_v = torch.mul(eps_in, eps_out)
        return F.linear(input, self.weight + self.sigma_weight * noise_v, bias) 
開發者ID:cpnota,項目名稱:autonomous-learning-library,代碼行數:18,代碼來源:__init__.py

示例10: quantizeConvParams

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def quantizeConvParams(self):
        for index in range(self.num_of_params):
            if bitsW == 1:
              n = self.target_modules[index].data[0].nelement()
              s = self.target_modules[index].data.size()
              m = self.target_modules[index].data.norm(1, 3)\
                      .sum(2).sum(1).div(n).expand(s)
              m = Q(m, bitsG)     
              self.target_modules[index].data.sign()\
                      .mul(m, out=self.target_modules[index].data)
            if bitsW == 2:
              w = self.target_modules[index].data
              n = self.target_modules[index].data[0].nelement()
              s = self.target_modules[index].data.size()
              d = self.target_modules[index].data.norm(1, 3)\
                      .sum(2).sum(1).div(n).mul(0.7)
              wt = w
              for col in range(s[0]):
                  d_col = d[col,0,0,0]
                  wt_neg = w[col,:,:,:].lt(-1.0 * d_col).float().mul(-1)
                  wt_pos = w[col,:,:,:].gt(1.0  * d_col).float()
                  wt[col,:,:,:] = wt_pos.add(wt_neg)
              wt.mul(1, out=self.target_modules[index].data)        
            else:
              self.target_modules[index].data = Q(C(self.target_modules[index].data, bitsW), bitsW) 
開發者ID:zhiqiangdon,項目名稱:CU-Net,代碼行數:27,代碼來源:quantize_prev_version.py

示例11: updateQuanGradWeight

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def updateQuanGradWeight(self):
        for index in range(self.num_of_params):
          if bitsW == 1:
              weight = self.target_modules[index].data
              n = weight[0].nelement()
              s = weight.size()
              m = weight.norm(1, 3)\
                      .sum(2).sum(1).div(n).expand(s)
              m[weight.lt(-1.0)] = 0 
              m[weight.gt(1.0)] = 0
              m = Q(m, bitsG)
              m = m.mul(self.target_modules[index].grad.data)
              m_add = weight.sign().mul(self.target_modules[index].grad.data)
              m_add = m_add.sum(3)\
                      .sum(2).sum(1).div(n).expand(s)
              m_add = m_add.mul(weight.sign())
              self.target_modules[index].grad.data = m.add(m_add).mul(1.0-1.0/s[1]).mul(n)
              self.target_modules[index].grad.data = Q(C(self.target_modules[index].grad.data, bitsG), bitsG)
          else:
              self.target_modules[index].grad.data = Q(C(self.target_modules[index].grad.data, bitsG), bitsG) 
開發者ID:zhiqiangdon,項目名稱:CU-Net,代碼行數:22,代碼來源:quantize_prev_version.py

示例12: quantizeConvParams

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def quantizeConvParams(self):
        for index in range(self.num_of_params):
            if bitsW == 1:
              n = self.target_modules[index].data[0].nelement()
              s = self.target_modules[index].data.size()
              m = self.target_modules[index].data.norm(1, 3, True)\
                      .sum(2, True).sum(1, True).div(n).expand(s)
              m = Q(m, bitsG)     
              self.target_modules[index].data = self.target_modules[index].data.sign()\
                      .mul(m)
            if bitsW == 2:
              w = self.target_modules[index].data
              n = self.target_modules[index].data[0].nelement()
              s = self.target_modules[index].data.size()
              d = self.target_modules[index].data.norm(1, 3, True)\
                      .sum(2, True).sum(1, True).div(n).mul(0.7)
              wt = w
              for col in range(s[0]):
                  d_col = d[col,0,0,0]
                  wt_neg = w[col,:,:,:].lt(-1.0 * d_col).float().mul(-1)
                  wt_pos = w[col,:,:,:].gt(1.0  * d_col).float()
                  wt[col,:,:,:] = wt_pos.add(wt_neg)
              self.target_modules[index].data = wt.mul(1)        
            else:
              self.target_modules[index].data = Q(C(self.target_modules[index].data, bitsW), bitsW) 
開發者ID:zhiqiangdon,項目名稱:CU-Net,代碼行數:27,代碼來源:quantize.py

示例13: exp_deriv_WQR

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def exp_deriv_WQR(x, kapa, gamma=2, init=0.25/2, size=5):
    res = torch.zeros_like(x)

    res -= kapa*(torch.sign(x)*torch.abs(x-(init)) + torch.abs(x)) *\
           (x>0).float()*(x<   ((init+init*gamma)/2) ).float()

    res -= kapa*(torch.sign(x)*torch.abs(x+init) + -1*torch.abs(x)) *\
           (x<0).float()*(x<   ((-init-init*gamma)/2) ).float()

    cur = init
    for _ in range(size-1):
        previous = cur
        cur *=gamma
        res -= kapa*(torch.sign(x)*torch.abs(x-cur) + torch.abs(x) ) *(x > (cur + previous) / 2).float()*(x < (cur+cur*gamma)/2).float()
        res -= kapa*(torch.sign(x)*torch.abs(x+cur) + torch.abs(x) ) *(x < (-cur - previous) / 2).float()*(x > (-cur-cur*gamma)/2).float()
    return res 
開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:18,代碼來源:WQR_connect.py

示例14: _quantOpXnor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def _quantOpXnor(dim=1):
    class _QuantXNOR(torch.autograd.Function):
        @staticmethod
        def forward(ctx, input):
            mean = torch.mean(input) if dim<0 else torch.mean(input, dim)
            ctx.save_for_backward(input, mean)
            
            if dim<0:
                return torch.sign(input)*mean
            else:
                form_mean = {0 : (1,-1), 1 : (-1,1)}[dim]
                return torch.sign(input)*mean.view(form_mean)
        @staticmethod
        def backward(ctx, grad_outputs):
            input, mean = ctx.saved_tensors
            sgn_input = torch.sign(input)
            if dim<0:
                return sgn_input*torch.mean(grad_outputs*sgn_input) + grad_outputs*mean
            form_mean = {0 : (1,-1), 1 : (-1,1)}[dim]

            return sgn_input*torch.mean( grad_outputs*sgn_input, dim ,keepdim=True) + grad_outputs*mean.view(form_mean).expand(input.size())
    return _QuantXNOR 
開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:24,代碼來源:xnor_connect.py

示例15: _quantOpXnor2d

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import sign [as 別名]
def _quantOpXnor2d(kernel_size, stride=1, padding=1, dilation=1, groups=1, form="NCHW"):
    if not form in ["NHWC", "NCHW"]:
        raise RuntimeError("Input form insupported ")

    if type(kernel_size) !=int:
        raise RuntimeError("Only int kernel_size supported (square kernel)")

    class _QuantXNOR2d(torch.autograd.Function):
        @staticmethod
        def forward(ctx, input):
            input_mean_channel = torch.mean(input, 1, keepdim=True)
            kernel = torch.ones(1, 1,kernel_size, kernel_size).to(input.device)
            kernel.data.mul_(1/(kernel_size**2))
            input_mean = torch.nn.functional.conv2d(input_mean_channel,kernel ,bias=False,stride=1, padding=1, dilation=1, groups=1)
            input_mean.require_grad = False
            ctx.save_for_backward(input, input_mean)
            return torch.sign(input)*input_mean

        @staticmethod
        def backward(ctx, grad_outputs):
            raise NotImplementedError("Conv XNor net not implemented !") 
開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:23,代碼來源:xnor_connect.py


注:本文中的torch.sign方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。