當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.randn_like方法代碼示例

本文整理匯總了Python中torch.randn_like方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.randn_like方法的具體用法?Python torch.randn_like怎麽用?Python torch.randn_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.randn_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_q

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def sample_q(args, device, f, replay_buffer, y=None):
    """this func takes in replay_buffer now so we have the option to sample from
    scratch (i.e. replay_buffer==[]).  See test_wrn_ebm.py for example.
    """
    f.eval()
    # get batch size
    bs = args.batch_size if y is None else y.size(0)
    # generate initial samples and buffer inds of those samples (if buffer is used)
    init_sample, buffer_inds = sample_p_0(device, replay_buffer, bs=bs, y=y)
    x_k = t.autograd.Variable(init_sample, requires_grad=True)
    # sgld
    for k in range(args.n_steps):
        f_prime = t.autograd.grad(f(x_k, y=y).sum(), [x_k], retain_graph=True)[0]
        x_k.data += args.sgld_lr * f_prime + args.sgld_std * t.randn_like(x_k)
    f.train()
    final_samples = x_k.detach()
    # update replay buffer
    if len(replay_buffer) > 0:
        replay_buffer[buffer_inds] = final_samples.cpu()
    return final_samples 
開發者ID:wgrathwohl,項目名稱:JEM,代碼行數:22,代碼來源:eval_wrn_ebm.py

示例2: step

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def step(self, closure):
        logp = closure()
        logp.backward()

        with torch.no_grad():
            for group in self.param_groups:
                for p in group["params"]:
                    if isinstance(p, (ManifoldParameter, ManifoldTensor)):
                        manifold = p.manifold
                    else:
                        manifold = self._default_manifold

                    egrad2rgrad, retr = manifold.egrad2rgrad, manifold.retr
                    epsilon = group["epsilon"]

                    n = torch.randn_like(p).mul_(math.sqrt(epsilon))
                    r = egrad2rgrad(p, 0.5 * epsilon * p.grad + n)
                    # use copy only for user facing point
                    copy_or_set_(p, retr(p, r))
                    p.grad.zero_()

        if not self.burnin:
            self.steps += 1
            self.log_probs.append(logp.item()) 
開發者ID:geoopt,項目名稱:geoopt,代碼行數:26,代碼來源:rsgld.py

示例3: anneal_Langevin_dynamics

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def anneal_Langevin_dynamics(self, x_mod, scorenet, sigmas, n_steps_each=100, step_lr=0.00002):
        images = []

        with torch.no_grad():
            for c, sigma in tqdm.tqdm(enumerate(sigmas), total=len(sigmas), desc='annealed Langevin dynamics sampling'):
                labels = torch.ones(x_mod.shape[0], device=x_mod.device) * c
                labels = labels.long()
                step_size = step_lr * (sigma / sigmas[-1]) ** 2
                for s in range(n_steps_each):
                    images.append(torch.clamp(x_mod, 0.0, 1.0).to('cpu'))
                    noise = torch.randn_like(x_mod) * np.sqrt(step_size * 2)
                    grad = scorenet(x_mod, labels)
                    x_mod = x_mod + step_size * grad + noise
                    # print("class: {}, step_size: {}, mean {}, max {}".format(c, step_size, grad.abs().mean(),
                    #                                                          grad.abs().max()))

            return images 
開發者ID:ermongroup,項目名稱:ncsn,代碼行數:19,代碼來源:anneal_runner.py

示例4: sliced_score_matching

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def sliced_score_matching(energy_net, samples, n_particles=1):
    dup_samples = samples.unsqueeze(0).expand(n_particles, *samples.shape).contiguous().view(-1, *samples.shape[1:])
    dup_samples.requires_grad_(True)
    vectors = torch.randn_like(dup_samples)
    vectors = vectors / torch.norm(vectors, dim=-1, keepdim=True)

    logp = -energy_net(dup_samples).sum()
    grad1 = autograd.grad(logp, dup_samples, create_graph=True)[0]
    gradv = torch.sum(grad1 * vectors)
    loss1 = torch.sum(grad1 * vectors, dim=-1) ** 2 * 0.5
    grad2 = autograd.grad(gradv, dup_samples, create_graph=True)[0]
    loss2 = torch.sum(vectors * grad2, dim=-1)

    loss1 = loss1.view(n_particles, -1).mean(dim=0)
    loss2 = loss2.view(n_particles, -1).mean(dim=0)
    loss = loss1 + loss2
    return loss.mean(), loss1.mean(), loss2.mean() 
開發者ID:ermongroup,項目名稱:ncsn,代碼行數:19,代碼來源:sliced_sm.py

示例5: sliced_score_estimation

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def sliced_score_estimation(score_net, samples, n_particles=1):
    dup_samples = samples.unsqueeze(0).expand(n_particles, *samples.shape).contiguous().view(-1, *samples.shape[1:])
    dup_samples.requires_grad_(True)
    vectors = torch.randn_like(dup_samples)
    vectors = vectors / torch.norm(vectors, dim=-1, keepdim=True)

    grad1 = score_net(dup_samples)
    gradv = torch.sum(grad1 * vectors)
    loss1 = torch.sum(grad1 * vectors, dim=-1) ** 2 * 0.5
    grad2 = autograd.grad(gradv, dup_samples, create_graph=True)[0]
    loss2 = torch.sum(vectors * grad2, dim=-1)

    loss1 = loss1.view(n_particles, -1).mean(dim=0)
    loss2 = loss2.view(n_particles, -1).mean(dim=0)

    loss = loss1 + loss2
    return loss.mean(), loss1.mean(), loss2.mean() 
開發者ID:ermongroup,項目名稱:ncsn,代碼行數:19,代碼來源:sliced_sm.py

示例6: sliced_score_estimation_vr

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def sliced_score_estimation_vr(score_net, samples, n_particles=1):
    """
    Be careful if the shape of samples is not B x x_dim!!!!
    """
    dup_samples = samples.unsqueeze(0).expand(n_particles, *samples.shape).contiguous().view(-1, *samples.shape[1:])
    dup_samples.requires_grad_(True)
    vectors = torch.randn_like(dup_samples)

    grad1 = score_net(dup_samples)
    gradv = torch.sum(grad1 * vectors)
    grad2 = autograd.grad(gradv, dup_samples, create_graph=True)[0]

    grad1 = grad1.view(dup_samples.shape[0], -1)
    loss1 = torch.sum(grad1 * grad1, dim=-1) / 2.

    loss2 = torch.sum((vectors * grad2).view(dup_samples.shape[0], -1), dim=-1)

    loss1 = loss1.view(n_particles, -1).mean(dim=0)
    loss2 = loss2.view(n_particles, -1).mean(dim=0)

    loss = loss1 + loss2
    return loss.mean(), loss1.mean(), loss2.mean() 
開發者ID:ermongroup,項目名稱:ncsn,代碼行數:24,代碼來源:sliced_sm.py

示例7: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def forward(self, images, labels):
        r"""
        Overridden.
        """
        images = images.to(self.device)
        labels = labels.to(self.device)
        loss = nn.CrossEntropyLoss()

        images = images + self.alpha*torch.randn_like(images).sign()

        for i in range(self.iters) :
            images.requires_grad = True
            outputs = self.model(images)
            cost = loss(outputs, labels).to(self.device)

            grad = torch.autograd.grad(cost, images, 
                                       retain_graph=False, create_graph=False)[0]
                
            adv_images = images + (self.eps-self.alpha)*grad.sign()
            images = torch.clamp(adv_images, min=0, max=1).detach_()

        adv_images = images
        
        return adv_images 
開發者ID:Harry24k,項目名稱:adversarial-attacks-pytorch,代碼行數:26,代碼來源:rfgsm.py

示例8: expectation

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def expectation(self):
    self.net.eval()
    with torch.no_grad():
      embedding = []
      batch_loader = DataLoader(
        self.data,
        batch_size=self.batch_size,
        shuffle=False
      )
      for point, *_ in batch_loader:
        features, mean, logvar = self.net(point.to(self.device))
        std = torch.exp(0.5 * logvar)
        sample = torch.randn_like(std).mul(std).add_(mean)
        latent_point = func.adaptive_avg_pool2d(sample, 1)

        latent_point = latent_point
        latent_point = latent_point.reshape(latent_point.size(0), -1)
        embedding.append(latent_point)
      embedding = torch.cat(embedding, dim=0)
      expectation = self.classifier(embedding)
    self.net.train()
    return expectation.to("cpu"), embedding.to("cpu") 
開發者ID:mjendrusch,項目名稱:torchsupport,代碼行數:24,代碼來源:clustering.py

示例9: integrate

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def integrate(self, score, data, *args):
    done = False
    count = 0
    step_count = self.steps if self.step > 0 else 10 * self.steps
    while not done:
      make_differentiable(data)
      make_differentiable(args)
      energy = score(data + self.noise * torch.randn_like(data), *args)
      if isinstance(energy, (list, tuple)):
        energy, *_ = energy
      gradient = ag.grad(energy, data, torch.ones_like(energy))[0]
      if self.max_norm:
        gradient = clip_grad_by_norm(gradient, self.max_norm)
      data = data - self.rate * gradient
      if self.clamp is not None:
        data = data.clamp(*self.clamp)
      data = data.detach()
      done = count >= step_count
      if self.target is not None:
        done = done and bool((energy.mean(dim=0) <= self.target).all())
      count += 1
      if (count + 1) % 500 == 0:
        data.random_()
    self.step += 1
    return data 
開發者ID:mjendrusch,項目名稱:torchsupport,代碼行數:27,代碼來源:samplers.py

示例10: reparameterize

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def reparameterize(mu, logvar):
    std = (0.5*logvar).exp()
    eps = torch.randn_like(std)
    return eps.mul(std) + mu 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:6,代碼來源:usermodule.py

示例11: rsample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def rsample(self, z_vecs, W_mean, W_var, perturb=True):
        batch_size = z_vecs.size(0)
        z_mean = W_mean(z_vecs)
        z_log_var = -torch.abs( W_var(z_vecs) )
        kl_loss = -0.5 * torch.sum(1.0 + z_log_var - z_mean * z_mean - torch.exp(z_log_var)) / batch_size
        epsilon = torch.randn_like(z_mean).cuda()
        z_vecs = z_mean + torch.exp(z_log_var / 2) * epsilon if perturb else z_mean
        return z_vecs, kl_loss 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:10,代碼來源:hgnn.py

示例12: rsample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def rsample(self, z_vecs, W_mean, W_var):
        batch_size = z_vecs.size(0)
        z_mean = W_mean(z_vecs)
        z_log_var = -torch.abs( W_var(z_vecs) )
        kl_loss = -0.5 * torch.sum(1.0 + z_log_var - z_mean * z_mean - torch.exp(z_log_var)) / batch_size
        epsilon = torch.randn_like(z_mean).cuda()
        z_vecs = z_mean + torch.exp(z_log_var / 2) * epsilon
        return z_vecs, kl_loss 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:10,代碼來源:hgnn.py

示例13: refined_logits

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def refined_logits(self, x, n_steps=args.n_steps_refine):
        xs = x.size()
        dup_x = x.view(xs[0], 1, xs[1], xs[2], xs[3]).repeat(1, args.n_dup_chains, 1, 1, 1)
        dup_x = dup_x.view(xs[0] * args.n_dup_chains, xs[1], xs[2], xs[3])
        dup_x = dup_x + torch.randn_like(dup_x) * args.sigma
        refined = self.refine(dup_x, n_steps=n_steps, detach=False)
        logits = self.logits(refined)
        logits = logits.view(x.size(0), args.n_dup_chains, logits.size(1))
        logits = logits.mean(1)
        return logits 
開發者ID:wgrathwohl,項目名稱:JEM,代碼行數:12,代碼來源:attack_model.py

示例14: refine

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def refine(self, x, n_steps=args.n_steps_refine, detach=True):
        # runs a markov chain seeded at x, use n_steps=10
        x_k = torch.autograd.Variable(x, requires_grad=True) if detach else x
        # sgld
        for k in range(n_steps):
            f_prime = torch.autograd.grad(self.f(x_k).sum(), [x_k], retain_graph=True)[0]
            x_k.data += f_prime + args.sgld_sigma * torch.randn_like(x_k)
        final_samples = x_k.detach() if detach else x_k
        return final_samples 
開發者ID:wgrathwohl,項目名稱:JEM,代碼行數:11,代碼來源:attack_model.py

示例15: get_sample_q

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randn_like [as 別名]
def get_sample_q(args, device):
    def sample_p_0(replay_buffer, bs, y=None):
        if len(replay_buffer) == 0:
            return init_random(args, bs), []
        buffer_size = len(replay_buffer) if y is None else len(replay_buffer) // args.n_classes
        inds = t.randint(0, buffer_size, (bs,))
        # if cond, convert inds to class conditional inds
        if y is not None:
            inds = y.cpu() * buffer_size + inds
            assert not args.uncond, "Can't drawn conditional samples without giving me y"
        buffer_samples = replay_buffer[inds]
        random_samples = init_random(args, bs)
        choose_random = (t.rand(bs) < args.reinit_freq).float()[:, None, None, None]
        samples = choose_random * random_samples + (1 - choose_random) * buffer_samples
        return samples.to(device), inds

    def sample_q(f, replay_buffer, y=None, n_steps=args.n_steps):
        """this func takes in replay_buffer now so we have the option to sample from
        scratch (i.e. replay_buffer==[]).  See test_wrn_ebm.py for example.
        """
        f.eval()
        # get batch size
        bs = args.batch_size if y is None else y.size(0)
        # generate initial samples and buffer inds of those samples (if buffer is used)
        init_sample, buffer_inds = sample_p_0(replay_buffer, bs=bs, y=y)
        x_k = t.autograd.Variable(init_sample, requires_grad=True)
        # sgld
        for k in range(n_steps):
            f_prime = t.autograd.grad(f(x_k, y=y).sum(), [x_k], retain_graph=True)[0]
            x_k.data += args.sgld_lr * f_prime + args.sgld_std * t.randn_like(x_k)
        f.train()
        final_samples = x_k.detach()
        # update replay buffer
        if len(replay_buffer) > 0:
            replay_buffer[buffer_inds] = final_samples.cpu()
        return final_samples
    return sample_q 
開發者ID:wgrathwohl,項目名稱:JEM,代碼行數:39,代碼來源:train_wrn_ebm.py


注:本文中的torch.randn_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。