本文整理匯總了Python中torch.optim.zero_grad方法的典型用法代碼示例。如果您正苦於以下問題:Python optim.zero_grad方法的具體用法?Python optim.zero_grad怎麽用?Python optim.zero_grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.optim
的用法示例。
在下文中一共展示了optim.zero_grad方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_steps
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_steps(self, steps):
self.model.train()
optimizer = optim.SGD(self.model.parameters(), lr=4.5e-3, momentum=0.9, weight_decay=4e-5, nesterov=True)
criterion = torch.nn.CrossEntropyLoss()
s = 0
avg_loss = []
iterator = iter(self.train_loader)
while s < steps:
try:
batch, label = next(iterator)
except StopIteration:
iterator = iter(self.train_loader)
batch, label = next(iterator)
batch, label = batch.to('cuda'), label.to('cuda')
optimizer.zero_grad()
out = self.model(batch)
loss = criterion(out, label)
loss.backward()
avg_loss.append(loss.item())
optimizer.step()
s += 1
print('Avg Loss: {:.3f}'.format(np.mean(avg_loss)))
示例2: train
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, loader, mixup, epoch, optim, criterion, device, dtype, batch_size, log_interval, child):
model.train()
correct1, correct5 = 0, 0
enum_load = enumerate(loader) if child else enumerate(tqdm(loader))
for batch_idx, (data, t) in enum_load:
data, t = data.to(device=device, dtype=dtype), t.to(device=device)
data, target = mixup(data, t)
optim.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optim.batch_step()
corr = correct(output, t, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
if batch_idx % log_interval == 0 and not child:
tqdm.write(
'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. '
'Top-1 accuracy: {:.2f}%({:.2f}%). '
'Top-5 accuracy: {:.2f}%({:.2f}%).'.format(epoch, batch_idx, len(loader),
100. * batch_idx / len(loader), loss.item(),
100. * corr[0] / batch_size,
100. * correct1 / (batch_size * (batch_idx + 1)),
100. * corr[1] / batch_size,
100. * correct5 / (batch_size * (batch_idx + 1))))
return loss.item(), correct1 / len(loader.sampler), correct5 / len(loader.sampler)
示例3: find_bounds_clr
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def find_bounds_clr(model, loader, optimizer, criterion, device, dtype, min_lr=8e-6, max_lr=8e-5, step_size=2000,
mode='triangular', save_path='.'):
model.train()
correct1, correct5 = 0, 0
scheduler = CyclicLR(optimizer, base_lr=min_lr, max_lr=max_lr, step_size_up=step_size, mode=mode)
epoch_count = step_size // len(loader) # Assuming step_size is multiple of batch per epoch
accuracy = []
for _ in trange(epoch_count):
for batch_idx, (data, target) in enumerate(tqdm(loader)):
if scheduler is not None:
scheduler.step()
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
corr = correct(output, target)
accuracy.append(corr[0] / data.shape[0])
lrs = np.linspace(min_lr, max_lr, step_size)
plt.plot(lrs, accuracy)
plt.show()
plt.savefig(os.path.join(save_path, 'find_bounds_clr.pdf'))
np.save(os.path.join(save_path, 'acc.npy'), accuracy)
return
示例4: train
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, optim, criterion, datum, label, states, num_classes):
''' Modify weights based off cost from one datapoint '''
optim.zero_grad()
output, states = model(datum, states)
output = output.view(1, num_classes)
is_correct = accuracy(output, label, num_classes)
loss = criterion(output, label)
loss.backward()
states = (states[0].detach(), states[1].detach())
optim.step()
return loss.item(), states, is_correct
示例5: train
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, optim, criterion, datum, label):
''' Modify weights based off cost from one datapoint '''
optim.zero_grad()
output = model(datum)
output = output.view(1, num_classes)
is_correct = accuracy(output, label)
loss = criterion(output, label)
loss.backward()
optim.step()
return loss.item(), is_correct
示例6: test_param_update
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def test_param_update(self):
for i in range(2500):
optim.zero_grad()
x = torch.randn(self.batch_size, inp_size)
y = test_net(x)
loss = torch.mean((y-x)**2)
loss.backward()
for name, p in test_net.named_parameters():
if 'weights' in name:
gp = torch.mm(p.grad, p.data.t())
p.grad = torch.mm(gp - gp.t(), p.data)
weights = p.data
optim.step()
if i%25 == 0:
print(loss.item(), end='\t')
WWt = torch.mm(weights, weights.t())
WWt -= torch.eye(weights.shape[0])
print(torch.max(torch.abs(WWt)).item(), end='\t')
print(torch.mean(WWt**2).item(), end='\t')
print()
示例7: train_epoch
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_epoch(model, optim, criterion, loader, lbda=None, cbns=None, maps=None, constraint=None):
model.train()
total = 0
top1 = 0
for i, (batch, label) in enumerate(loader):
optim.zero_grad()
batch, label = batch.to('cuda'), label.to('cuda')
total += batch.size(0)
out = model(batch)
_, pred = out.max(dim=1)
top1 += pred.eq(label).sum()
if constraint:
reg = lbda * regularizer(model, constraint, cbns, maps)
loss = criterion(out, label) + reg
else:
loss = criterion(out, label)
loss.backward()
optim.step()
if (i % 100 == 0) or (i == len(loader)-1):
print('Train | Batch ({}/{}) | Top-1: {:.2f} ({}/{})'.format(
i+1, len(loader),
float(top1)/total*100, top1, total))
if constraint:
truncate_smallbeta(model, cbns)
示例8: train_step
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_step(self, policy_loss):
self.net.zero_grad()
policy_loss.backward()
self.optimizer.step()
示例9: train_epoch
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_epoch(self, optim, criterion):
self.model.train()
total = 0
top1 = 0
data_t = 0
train_t = 0
total_loss = 0
s = time.time()
for i, (batch, label) in enumerate(self.train_loader):
data_t += time.time()-s
s = time.time()
optim.zero_grad()
batch, label = batch.to('cuda'), label.to('cuda')
total += batch.size(0)
out = self.model(batch)
loss = criterion(out, label)
loss.backward()
total_loss += loss.item()
optim.step()
train_t += time.time()-s
if (i % 100 == 0) or (i == len(self.train_loader)-1):
print('Batch ({}/{}) | Loss: {:.3f} | (PerBatch) Data: {:.3f}s, Network: {:.3f}s'.format(
i+1, len(self.train_loader), total_loss/(i+1), data_t/(i+1), train_t/(i+1)))
s = time.time()
示例10: train_model
# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_model(model, train_iter, epoch):
total_epoch_loss = 0
total_epoch_acc = 0
model.cuda()
optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
steps = 0
model.train()
for idx, batch in enumerate(train_iter):
text = batch.text[0]
target = batch.label
target = torch.autograd.Variable(target).long()
if torch.cuda.is_available():
text = text.cuda()
target = target.cuda()
if (text.size()[0] is not 32):# One of the batch returned by BucketIterator has length different than 32.
continue
optim.zero_grad()
prediction = model(text)
loss = loss_fn(prediction, target)
num_corrects = (torch.max(prediction, 1)[1].view(target.size()).data == target.data).float().sum()
acc = 100.0 * num_corrects/len(batch)
loss.backward()
clip_gradient(model, 1e-1)
optim.step()
steps += 1
if steps % 100 == 0:
print (f'Epoch: {epoch+1}, Idx: {idx+1}, Training Loss: {loss.item():.4f}, Training Accuracy: {acc.item(): .2f}%')
total_epoch_loss += loss.item()
total_epoch_acc += acc.item()
return total_epoch_loss/len(train_iter), total_epoch_acc/len(train_iter)