當前位置: 首頁>>代碼示例>>Python>>正文


Python optim.zero_grad方法代碼示例

本文整理匯總了Python中torch.optim.zero_grad方法的典型用法代碼示例。如果您正苦於以下問題:Python optim.zero_grad方法的具體用法?Python optim.zero_grad怎麽用?Python optim.zero_grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.optim的用法示例。


在下文中一共展示了optim.zero_grad方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train_steps

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_steps(self, steps):
        self.model.train()
        optimizer = optim.SGD(self.model.parameters(), lr=4.5e-3, momentum=0.9, weight_decay=4e-5, nesterov=True)
        criterion = torch.nn.CrossEntropyLoss()

        s = 0
        avg_loss = []
        iterator = iter(self.train_loader)
        while s < steps:
            try:
                batch, label = next(iterator)
            except StopIteration:
                iterator = iter(self.train_loader)
                batch, label = next(iterator)
            batch, label = batch.to('cuda'), label.to('cuda')
            optimizer.zero_grad()
            out = self.model(batch)
            loss = criterion(out, label)
            loss.backward()
            avg_loss.append(loss.item())
            optimizer.step()
            s += 1
        print('Avg Loss: {:.3f}'.format(np.mean(avg_loss))) 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:25,代碼來源:amc.py

示例2: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, loader, mixup, epoch, optim, criterion, device, dtype, batch_size, log_interval, child):
    model.train()
    correct1, correct5 = 0, 0

    enum_load = enumerate(loader) if child else enumerate(tqdm(loader))
    for batch_idx, (data, t) in enum_load:
        data, t = data.to(device=device, dtype=dtype), t.to(device=device)
        data, target = mixup(data, t)

        optim.zero_grad()
        output = model(data)

        loss = criterion(output, target)
        loss.backward()
        optim.batch_step()

        corr = correct(output, t, topk=(1, 5))
        correct1 += corr[0]
        correct5 += corr[1]
        if batch_idx % log_interval == 0 and not child:
            tqdm.write(
                'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. '
                'Top-1 accuracy: {:.2f}%({:.2f}%). '
                'Top-5 accuracy: {:.2f}%({:.2f}%).'.format(epoch, batch_idx, len(loader),
                                                           100. * batch_idx / len(loader), loss.item(),
                                                           100. * corr[0] / batch_size,
                                                           100. * correct1 / (batch_size * (batch_idx + 1)),
                                                           100. * corr[1] / batch_size,
                                                           100. * correct5 / (batch_size * (batch_idx + 1))))
    return loss.item(), correct1 / len(loader.sampler), correct5 / len(loader.sampler) 
開發者ID:Randl,項目名稱:MobileNetV3-pytorch,代碼行數:32,代碼來源:run.py

示例3: find_bounds_clr

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def find_bounds_clr(model, loader, optimizer, criterion, device, dtype, min_lr=8e-6, max_lr=8e-5, step_size=2000,
                    mode='triangular', save_path='.'):
    model.train()
    correct1, correct5 = 0, 0
    scheduler = CyclicLR(optimizer, base_lr=min_lr, max_lr=max_lr, step_size_up=step_size, mode=mode)
    epoch_count = step_size // len(loader)  # Assuming step_size is multiple of batch per epoch
    accuracy = []
    for _ in trange(epoch_count):
        for batch_idx, (data, target) in enumerate(tqdm(loader)):
            if scheduler is not None:
                scheduler.step()
            data, target = data.to(device=device, dtype=dtype), target.to(device=device)

            optimizer.zero_grad()
            output = model(data)

            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            corr = correct(output, target)
            accuracy.append(corr[0] / data.shape[0])

    lrs = np.linspace(min_lr, max_lr, step_size)
    plt.plot(lrs, accuracy)
    plt.show()
    plt.savefig(os.path.join(save_path, 'find_bounds_clr.pdf'))
    np.save(os.path.join(save_path, 'acc.npy'), accuracy)
    return 
開發者ID:Randl,項目名稱:MobileNetV3-pytorch,代碼行數:31,代碼來源:run.py

示例4: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, optim, criterion, datum, label, states, num_classes):
	''' Modify weights based off cost from one datapoint '''
	optim.zero_grad()
	output, states = model(datum, states)
	output = output.view(1, num_classes)
	is_correct = accuracy(output, label, num_classes)
	loss = criterion(output, label)
	loss.backward()
	states = (states[0].detach(), states[1].detach())
	optim.step()

	return loss.item(), states, is_correct 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:14,代碼來源:lstm.py

示例5: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train(model, optim, criterion, datum, label):
	''' Modify weights based off cost from one datapoint '''
	optim.zero_grad()
	output = model(datum)
	output = output.view(1, num_classes)
	is_correct = accuracy(output, label)
	loss = criterion(output, label)
	loss.backward()
	optim.step()

	return loss.item(), is_correct 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:13,代碼來源:popnn_torch.py

示例6: test_param_update

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def test_param_update(self):

        for i in range(2500):
            optim.zero_grad()

            x = torch.randn(self.batch_size, inp_size)
            y = test_net(x)

            loss = torch.mean((y-x)**2)
            loss.backward()

            for name, p in test_net.named_parameters():
                if 'weights' in name:
                    gp = torch.mm(p.grad, p.data.t())
                    p.grad = torch.mm(gp - gp.t(), p.data)

                    weights = p.data

            optim.step()

            if i%25 == 0:
                print(loss.item(), end='\t')
                WWt = torch.mm(weights, weights.t())
                WWt -= torch.eye(weights.shape[0])
                print(torch.max(torch.abs(WWt)).item(), end='\t')
                print(torch.mean(WWt**2).item(), end='\t')
                print() 
開發者ID:VLL-HD,項目名稱:FrEIA,代碼行數:29,代碼來源:orthogonal_layer.py

示例7: train_epoch

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_epoch(model, optim, criterion, loader, lbda=None, cbns=None, maps=None, constraint=None):
    model.train()
    total = 0
    top1 = 0
    for i, (batch, label) in enumerate(loader):
        optim.zero_grad()
        batch, label = batch.to('cuda'), label.to('cuda')
        total += batch.size(0)

        out = model(batch)
        _, pred = out.max(dim=1)
        top1 += pred.eq(label).sum()
        if constraint:
            reg = lbda * regularizer(model, constraint, cbns, maps)
            loss = criterion(out, label) + reg
        else:
            loss = criterion(out, label)
        loss.backward()
        optim.step()

        if (i % 100 == 0) or (i == len(loader)-1):
            print('Train | Batch ({}/{}) | Top-1: {:.2f} ({}/{})'.format(
                i+1, len(loader),
                float(top1)/total*100, top1, total))
    if constraint:
        truncate_smallbeta(model, cbns) 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:28,代碼來源:morphnet.py

示例8: train_step

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_step(self, policy_loss):
        self.net.zero_grad()
        policy_loss.backward()
        self.optimizer.step() 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:6,代碼來源:amc.py

示例9: train_epoch

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_epoch(self, optim, criterion):
        self.model.train()
        total = 0
        top1 = 0

        data_t = 0
        train_t = 0
        total_loss = 0
        s = time.time()
        for i, (batch, label) in enumerate(self.train_loader):
            data_t += time.time()-s
            s = time.time()
            optim.zero_grad()
            batch, label = batch.to('cuda'), label.to('cuda')
            total += batch.size(0)

            out = self.model(batch)
            loss = criterion(out, label)
            loss.backward()
            total_loss += loss.item()
            optim.step()
            train_t += time.time()-s

            if (i % 100 == 0) or (i == len(self.train_loader)-1):
                print('Batch ({}/{}) | Loss: {:.3f} | (PerBatch) Data: {:.3f}s,  Network: {:.3f}s'.format(
                    i+1, len(self.train_loader), total_loss/(i+1), data_t/(i+1), train_t/(i+1)))
            s = time.time() 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:29,代碼來源:amc.py

示例10: train_model

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import zero_grad [as 別名]
def train_model(model, train_iter, epoch):
    total_epoch_loss = 0
    total_epoch_acc = 0
    model.cuda()
    optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
    steps = 0
    model.train()
    for idx, batch in enumerate(train_iter):
        text = batch.text[0]
        target = batch.label
        target = torch.autograd.Variable(target).long()
        if torch.cuda.is_available():
            text = text.cuda()
            target = target.cuda()
        if (text.size()[0] is not 32):# One of the batch returned by BucketIterator has length different than 32.
            continue
        optim.zero_grad()
        prediction = model(text)
        loss = loss_fn(prediction, target)
        num_corrects = (torch.max(prediction, 1)[1].view(target.size()).data == target.data).float().sum()
        acc = 100.0 * num_corrects/len(batch)
        loss.backward()
        clip_gradient(model, 1e-1)
        optim.step()
        steps += 1
        
        if steps % 100 == 0:
            print (f'Epoch: {epoch+1}, Idx: {idx+1}, Training Loss: {loss.item():.4f}, Training Accuracy: {acc.item(): .2f}%')
        
        total_epoch_loss += loss.item()
        total_epoch_acc += acc.item()
        
    return total_epoch_loss/len(train_iter), total_epoch_acc/len(train_iter) 
開發者ID:prakashpandey9,項目名稱:Text-Classification-Pytorch,代碼行數:35,代碼來源:main.py


注:本文中的torch.optim.zero_grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。