當前位置: 首頁>>代碼示例>>Python>>正文


Python optim.step方法代碼示例

本文整理匯總了Python中torch.optim.step方法的典型用法代碼示例。如果您正苦於以下問題:Python optim.step方法的具體用法?Python optim.step怎麽用?Python optim.step使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.optim的用法示例。


在下文中一共展示了optim.step方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train(self, model, epochs, name):
        self.model = model
        optimizer = optim.SGD(model.parameters(), lr=1e-2, momentum=0.9, weight_decay=5e-4, nesterov=True)
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [int(epochs*0.3), int(epochs*0.6), int(epochs*0.8)], gamma=0.2)
        criterion = torch.nn.CrossEntropyLoss()

        for e in range(epochs):
            print('Epoch {}...'.format(e))
            print('Train')
            self.train_epoch(optimizer, criterion)

            top1, _ = self.test(self.test_loader)
            print('Test | Top-1: {:.2f}'.format(top1))
            scheduler.step()
        top1, _ = self.test(self.test_loader)
        torch.save(model, './ckpt/{}_final.t7'.format(name))
        return top1 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:19,代碼來源:amc.py

示例2: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train(model, optim, criterion, datum, label, states, num_classes):
	''' Modify weights based off cost from one datapoint '''
	optim.zero_grad()
	output, states = model(datum, states)
	output = output.view(1, num_classes)
	is_correct = accuracy(output, label, num_classes)
	loss = criterion(output, label)
	loss.backward()
	states = (states[0].detach(), states[1].detach())
	optim.step()

	return loss.item(), states, is_correct 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:14,代碼來源:lstm.py

示例3: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train(model, optim, criterion, datum, label):
	''' Modify weights based off cost from one datapoint '''
	optim.zero_grad()
	output = model(datum)
	output = output.view(1, num_classes)
	is_correct = accuracy(output, label)
	loss = criterion(output, label)
	loss.backward()
	optim.step()

	return loss.item(), is_correct 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:13,代碼來源:popnn_torch.py

示例4: test_param_update

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def test_param_update(self):

        for i in range(2500):
            optim.zero_grad()

            x = torch.randn(self.batch_size, inp_size)
            y = test_net(x)

            loss = torch.mean((y-x)**2)
            loss.backward()

            for name, p in test_net.named_parameters():
                if 'weights' in name:
                    gp = torch.mm(p.grad, p.data.t())
                    p.grad = torch.mm(gp - gp.t(), p.data)

                    weights = p.data

            optim.step()

            if i%25 == 0:
                print(loss.item(), end='\t')
                WWt = torch.mm(weights, weights.t())
                WWt -= torch.eye(weights.shape[0])
                print(torch.max(torch.abs(WWt)).item(), end='\t')
                print(torch.mean(WWt**2).item(), end='\t')
                print() 
開發者ID:VLL-HD,項目名稱:FrEIA,代碼行數:29,代碼來源:orthogonal_layer.py

示例5: train_epoch

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train_epoch(model, optim, criterion, loader, lbda=None, cbns=None, maps=None, constraint=None):
    model.train()
    total = 0
    top1 = 0
    for i, (batch, label) in enumerate(loader):
        optim.zero_grad()
        batch, label = batch.to('cuda'), label.to('cuda')
        total += batch.size(0)

        out = model(batch)
        _, pred = out.max(dim=1)
        top1 += pred.eq(label).sum()
        if constraint:
            reg = lbda * regularizer(model, constraint, cbns, maps)
            loss = criterion(out, label) + reg
        else:
            loss = criterion(out, label)
        loss.backward()
        optim.step()

        if (i % 100 == 0) or (i == len(loader)-1):
            print('Train | Batch ({}/{}) | Top-1: {:.2f} ({}/{})'.format(
                i+1, len(loader),
                float(top1)/total*100, top1, total))
    if constraint:
        truncate_smallbeta(model, cbns) 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:28,代碼來源:morphnet.py

示例6: train

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train(model, train_loader, val_loader, epochs=10, lr=1e-2, name=''):
    model = model.to('cuda')
    model.train()

    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4, nesterov=True)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [int(epochs*0.3), int(epochs*0.6), int(epochs*0.8)], gamma=0.2)
    criterion = torch.nn.CrossEntropyLoss()
    
    for e in range(epochs):
        train_epoch(model, optimizer, criterion, train_loader)
        top1, val_loss = test(model, val_loader)
        print('Epoch {} | Top-1: {:.2f}'.format(e, top1))
        torch.save(model, 'ckpt/{}_best.t7'.format(name))
        scheduler.step()
    return model 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:17,代碼來源:morphnet.py

示例7: train_step

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train_step(self, policy_loss):
        self.net.zero_grad()
        policy_loss.backward()
        self.optimizer.step() 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:6,代碼來源:amc.py

示例8: train_epoch

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train_epoch(self, optim, criterion):
        self.model.train()
        total = 0
        top1 = 0

        data_t = 0
        train_t = 0
        total_loss = 0
        s = time.time()
        for i, (batch, label) in enumerate(self.train_loader):
            data_t += time.time()-s
            s = time.time()
            optim.zero_grad()
            batch, label = batch.to('cuda'), label.to('cuda')
            total += batch.size(0)

            out = self.model(batch)
            loss = criterion(out, label)
            loss.backward()
            total_loss += loss.item()
            optim.step()
            train_t += time.time()-s

            if (i % 100 == 0) or (i == len(self.train_loader)-1):
                print('Batch ({}/{}) | Loss: {:.3f} | (PerBatch) Data: {:.3f}s,  Network: {:.3f}s'.format(
                    i+1, len(self.train_loader), total_loss/(i+1), data_t/(i+1), train_t/(i+1)))
            s = time.time() 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:29,代碼來源:amc.py

示例9: train_model

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def train_model(model, train_iter, epoch):
    total_epoch_loss = 0
    total_epoch_acc = 0
    model.cuda()
    optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
    steps = 0
    model.train()
    for idx, batch in enumerate(train_iter):
        text = batch.text[0]
        target = batch.label
        target = torch.autograd.Variable(target).long()
        if torch.cuda.is_available():
            text = text.cuda()
            target = target.cuda()
        if (text.size()[0] is not 32):# One of the batch returned by BucketIterator has length different than 32.
            continue
        optim.zero_grad()
        prediction = model(text)
        loss = loss_fn(prediction, target)
        num_corrects = (torch.max(prediction, 1)[1].view(target.size()).data == target.data).float().sum()
        acc = 100.0 * num_corrects/len(batch)
        loss.backward()
        clip_gradient(model, 1e-1)
        optim.step()
        steps += 1
        
        if steps % 100 == 0:
            print (f'Epoch: {epoch+1}, Idx: {idx+1}, Training Loss: {loss.item():.4f}, Training Accuracy: {acc.item(): .2f}%')
        
        total_epoch_loss += loss.item()
        total_epoch_acc += acc.item()
        
    return total_epoch_loss/len(train_iter), total_epoch_acc/len(train_iter) 
開發者ID:prakashpandey9,項目名稱:Text-Classification-Pytorch,代碼行數:35,代碼來源:main.py

示例10: step

# 需要導入模塊: from torch import optim [as 別名]
# 或者: from torch.optim import step [as 別名]
def step(self, action):
        self.last_act = action

        self.layer_counter, self.cost, self.rest, rest_max_flops = self.filter_pruner.amc_compress(self.layer_counter, action, self.max_sparsity)

        self.reduced = self.full_flops - self.cost

        m_flop, m_size = 0, 0

        if self.layer_counter >= len(self.filter_pruner.activation_to_conv):
            # Just finish, evaluate reward
            state = torch.zeros(1)

            filters_to_prune_per_layer = self.filter_pruner.get_pruning_plan_from_layer_budget(self.filter_pruner.conv_out_channels)
            prune_targets = self.filter_pruner.pack_pruning_target(filters_to_prune_per_layer, get_segment=True, progressive=True)
            layers_pruned = {}
            for layer_index, filter_index in prune_targets:
                if layer_index not in layers_pruned:
                    layers_pruned[layer_index] = 0
                layers_pruned[layer_index] = layers_pruned[layer_index] + (filter_index[1]-filter_index[0]+1)

            filters_left = {}
            for k in sorted(self.filter_pruner.filter_ranks.keys()):
                if k not in layers_pruned:
                    layers_pruned[k] = 0
                filters_left[k] = len(self.filter_pruner.filter_ranks[k]) - layers_pruned[k]
            print('Filters left: {}'.format(sorted(filters_left.items())))
            print('Prunning filters..')
            for layer_index, filter_index in prune_targets:
                self.filter_pruner.prune_conv_layer_segment(layer_index, filter_index)
            m_flop, m_size = measure_model(self.model, self.filter_pruner, self.image_size)
            flops = 0
            print('FLOPs: {:.3f}M | #Params: {:.3f}M'.format(m_flop/1e6, m_size/1e6))
            self.train_steps(self.steps)
            top1, loss = self.test(self.val_loader)
            reward = top1
            terminal = 1
        else:

            flops = self.filter_pruner.get_unit_flops_for_layer(self.layer_counter)

            conv = self.filter_pruner.activation_to_conv[self.layer_counter]
            h = self.filter_pruner.omap_size[self.layer_counter][0]
            w = self.filter_pruner.omap_size[self.layer_counter][1]

            state = torch.Tensor([float(self.layer_counter)/len(self.filter_pruner.activation_to_conv),
                    float(self.filter_pruner.conv_out_channels[self.layer_counter])/self.max_oc,
                    float(self.filter_pruner.conv_in_channels[self.layer_counter])/self.max_ic,
                    float(h)/self.max_fh,
                    float(w)/self.max_fw,
                    float(conv.stride[0])/self.max_stride,
                    float(conv.weight.size(2))/self.max_k,
                    float(flops) /self.full_flops,
                    float(self.reduced)/self.full_flops,
                    float(self.rest)/self.full_flops,
                    self.last_act])

            reward = 0
            terminal = 0

        return state, reward, terminal, [self.full_flops, rest_max_flops, self.reduced, flops, m_flop, m_size] 
開發者ID:cmu-enyac,項目名稱:LeGR,代碼行數:63,代碼來源:amc.py


注:本文中的torch.optim.step方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。