當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizer.required方法代碼示例

本文整理匯總了Python中torch.optim.optimizer.required方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizer.required方法的具體用法?Python optimizer.required怎麽用?Python optimizer.required使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.optim.optimizer的用法示例。


在下文中一共展示了optimizer.required方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
                 max_grad_norm=1.0):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)
        super(BertAdam, self).__init__(params, defaults) 
開發者ID:ymcui,項目名稱:cmrc2019,代碼行數:21,代碼來源:optimization.py

示例2: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        # initialize schedule object
        if not isinstance(schedule, _LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
                logger.warning(
                    "warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                    "Please specify custom warmup and t_total in _LRSchedule object.")
        defaults = dict(lr=lr, schedule=schedule,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)
        super(BertAdam, self).__init__(params, defaults) 
開發者ID:sinovation,項目名稱:ZEN,代碼行數:27,代碼來源:optimization.py

示例3: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, eta=required, momentum=0, weight_decay=0, eps=1e-5):
        if eta is not required and eta <= 0.0:
            raise ValueError("Invalid eta: {}".format(eta))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))

        defaults = dict(eta=eta, momentum=momentum, weight_decay=weight_decay)
        super(DFW, self).__init__(params, defaults)
        self.eps = eps

        for group in self.param_groups:
            if group['momentum']:
                for p in group['params']:
                    self.state[p]['momentum_buffer'] = torch.zeros_like(p.data, requires_grad=False) 
開發者ID:oval-group,項目名稱:dfw,代碼行數:18,代碼來源:dfw.py

示例4: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, eta=required, momentum=0, weight_decay=0, eps=1e-5):
        if eta is not required and eta <= 0.0:
            raise ValueError("Invalid eta: {}".format(eta))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))

        defaults = dict(eta=eta, momentum=momentum, weight_decay=weight_decay)
        super(BPGrad, self).__init__(params, defaults)
        self.eps = eps

        for group in self.param_groups:
            group['L'] = 1. / group['eta']
            if group['momentum']:
                for p in group['params']:
                    self.state[p]['v'] = torch.zeros_like(p.data, requires_grad=False) 
開發者ID:oval-group,項目名稱:dfw,代碼行數:19,代碼來源:bpgrad.py

示例5: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        # initialize schedule object
        if not isinstance(schedule, _LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
                logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                               "Please specify custom warmup and t_total in _LRSchedule object.")
        defaults = dict(lr=lr, schedule=schedule,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)
        super(BertAdam, self).__init__(params, defaults) 
開發者ID:649453932,項目名稱:Bert-Chinese-Text-Classification-Pytorch,代碼行數:26,代碼來源:optimization.py

示例6: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
                 b1=0.9, b2=0.999, e=1e-8, weight_decay=0,
                 vector_l2=False, max_grad_norm=-1, **kwargs):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        # initialize schedule object
        if not isinstance(schedule, _LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
                logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                               "Please specify custom warmup and t_total in _LRSchedule object.")
        defaults = dict(lr=lr, schedule=schedule,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
                        max_grad_norm=max_grad_norm)
        super(OpenAIAdam, self).__init__(params, defaults) 
開發者ID:649453932,項目名稱:Bert-Chinese-Text-Classification-Pytorch,代碼行數:27,代碼來源:optimization_openai.py

示例7: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
        # initialize schedule object
        if not isinstance(schedule, _LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
                logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
                               "Please specify custom warmup and t_total in _LRSchedule object.")
        defaults = dict(lr=lr, schedule=schedule,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)
        super(GPT2Adam, self).__init__(params, defaults) 
開發者ID:ftarlaci,項目名稱:GPT2sQA,代碼行數:26,代碼來源:optimization.py

示例8: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, momentum=required, nu=required, weight_decay=0.0, weight_decay_type="grad"):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        if weight_decay_type not in ("grad", "direct"):
            raise ValueError("Invalid weight_decay_type value: {}".format(weight_decay_type))

        defaults = {
            "lr": lr,
            "momentum": momentum,
            "nu": nu,
            "weight_decay": weight_decay,
            "weight_decay_type": weight_decay_type,
        }
        super(QHM, self).__init__(params, defaults) 
開發者ID:facebookresearch,項目名稱:qhoptim,代碼行數:20,代碼來源:qhm.py

示例9: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
                 b1=0.9, b2=0.999, e=1e-8, weight_decay=0,
                 vector_l2=False, max_grad_norm=-1, **kwargs):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {}".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {}".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {}".format(e))
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
                        max_grad_norm=max_grad_norm)
        super(OpenAIAdam, self).__init__(params, defaults) 
開發者ID:zphang,項目名稱:bert_on_stilts,代碼行數:21,代碼來源:optimization_openai.py

示例10: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0):
        if lr is not required and lr < 0.0:
            raise ValueError(
                "Invalid learning rate: {} - should be >= 0.0".format(lr))
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError(
                "Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
        if not 0.0 <= b1 < 1.0:
            raise ValueError(
                "Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError(
                "Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError(
                "Invalid epsilon value: {} - should be >= 0.0".format(e))
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm)
        super(BertAdam, self).__init__(params, defaults) 
開發者ID:microsoft,項目名稱:unilm,代碼行數:24,代碼來源:optimization.py

示例11: __init__

# 需要導入模塊: from torch.optim import optimizer [as 別名]
# 或者: from torch.optim.optimizer import required [as 別名]
def __init__(self, params, lr=required, n_push=required, n_pull=required, model=required):
        """__init__

        :param params:
        :param lr:
        :param freq:
        :param model:
        """
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))

        defaults = dict(lr=lr,)
        self.accumulated_gradients = torch.zeros(ravel_model_params(model).size())
        self.n_pull = n_pull
        self.n_push = n_push

        self.model = model
        # this sets the initial model parameters
        send_message(MessageCode.ParameterUpdate, ravel_model_params(self.model))
        self.idx = 0

        listener = DownpourListener(self.model)
        listener.start()

        super(DownpourSGD, self).__init__(params, defaults) 
開發者ID:ucla-labx,項目名稱:distbelief,代碼行數:27,代碼來源:downpour_sgd.py


注:本文中的torch.optim.optimizer.required方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。