當前位置: 首頁>>代碼示例>>Python>>正文


Python lr_scheduler.ReduceLROnPlateau方法代碼示例

本文整理匯總了Python中torch.optim.lr_scheduler.ReduceLROnPlateau方法的典型用法代碼示例。如果您正苦於以下問題:Python lr_scheduler.ReduceLROnPlateau方法的具體用法?Python lr_scheduler.ReduceLROnPlateau怎麽用?Python lr_scheduler.ReduceLROnPlateau使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.optim.lr_scheduler的用法示例。


在下文中一共展示了lr_scheduler.ReduceLROnPlateau方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: step_ReduceLROnPlateau

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def step_ReduceLROnPlateau(self, metrics, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1
        self.last_epoch = epoch if epoch != 0 else 1
        # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning
        if self.last_epoch <= self.total_epoch:
            warmup_lr = [
                base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.)
                for base_lr in self.base_lrs
            ]
            for param_group, lr in zip(self.optimizer.param_groups, warmup_lr):
                param_group['lr'] = lr
        else:
            if epoch is None:
                self.after_scheduler.step(metrics, None)
            else:
                self.after_scheduler.step(metrics, epoch - self.total_epoch) 
開發者ID:arthurdouillard,項目名稱:incremental_learning.pytorch,代碼行數:19,代碼來源:schedulers.py

示例2: get_optim

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def get_optim(lr):
    # Lower the learning rate on the VGG fully connected layers by 1/10th. It's a hack, but it helps
    # stabilize the models.
    fc_params = [p for n,p in detector.named_parameters() if n.startswith('roi_fmap') and p.requires_grad]
    non_fc_params = [p for n,p in detector.named_parameters() if not n.startswith('roi_fmap') and p.requires_grad]
    params = [{'params': fc_params, 'lr': lr / 10.0}, {'params': non_fc_params}]
    # params = [p for n,p in detector.named_parameters() if p.requires_grad]

    if conf.adam:
        optimizer = optim.Adam(params, weight_decay=conf.l2, lr=lr, eps=1e-3)
    else:
        optimizer = optim.SGD(params, weight_decay=conf.l2, lr=lr, momentum=0.9)

    scheduler = ReduceLROnPlateau(optimizer, 'max', patience=3, factor=0.1,
                                  verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1)
    return optimizer, scheduler 
開發者ID:rowanz,項目名稱:neural-motifs,代碼行數:18,代碼來源:train_rels.py

示例3: __init__

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def __init__(self, monitor='val_loss', better='auto', factor=0.1,
                 patience=10, verbose=False, threshold=1e-4,
                 threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8):
        self.monitor = monitor
        self.patience = patience
        self.better, self.better_comp, self.best_value = init_better(
            better, monitor)

        super().__init__(
            lambda opt: _scheduler.ReduceLROnPlateau(opt,
                                                     mode=self.better,
                                                     factor=factor,
                                                     patience=patience,
                                                     verbose=verbose,
                                                     threshold=threshold,
                                                     threshold_mode=threshold_mode,
                                                     cooldown=cooldown,
                                                     min_lr=min_lr,
                                                     eps=eps),
            step_on_iteration=False
        ) 
開發者ID:lRomul,項目名稱:argus,代碼行數:23,代碼來源:lr_schedulers.py

示例4: on_epoch_end

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def on_epoch_end(self, net, **kwargs):
        if not self.step_every == 'epoch':
            return
        epoch = len(net.history)
        if isinstance(self.lr_scheduler_, ReduceLROnPlateau):
            if callable(self.monitor):
                score = self.monitor(net)
            else:
                if self.lr_scheduler_.mode == 'max':
                    score = -np.inf
                elif self.lr_scheduler_.mode == 'min':
                    score = np.inf
                else:
                    score = net.history[-1, self.monitor]

            self.lr_scheduler_.step(score, epoch)
            # ReduceLROnPlateau does not expose the current lr so it can't be recorded
        else:
            if self.event_name is not None and hasattr(
                    self.lr_scheduler_, "get_last_lr"):
                net.history.record(self.event_name,
                                   self.lr_scheduler_.get_last_lr()[0])
            self.lr_scheduler_.step(epoch) 
開發者ID:skorch-dev,項目名稱:skorch,代碼行數:25,代碼來源:lr_scheduler.py

示例5: get_scheduler

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def get_scheduler(optimizer, opt):
    if opt.lr_policy == 'lambda':
        def lambda_rule(epoch):
            lr_l = 1.0 - max(0, epoch-
                             opt.niter) / float(opt.niter_decay + 1)
            return lr_l
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step':
        scheduler = lr_scheduler.StepLR(
            optimizer, step_size=opt.lr_decay_iters, gamma=0.5)
    elif opt.lr_policy == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(
            optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
    elif opt.lr_policy == 'cosine':
        scheduler = lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=opt.niter, eta_min=0)
    else:
        return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
    return scheduler 
開發者ID:bj80heyue,項目名稱:One_Shot_Face_Reenactment,代碼行數:21,代碼來源:base_net.py

示例6: _optimizers_schedulers

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def _optimizers_schedulers(self, lr, lr_noise):
        """Initialize Adam optimizers and schedulers (ReduceLROnPlateau)

        Args:
            lr (float): learning rate for NN parameters `w`
            lr_noise (float): learning rate for noise precision `log_beta`
        """
        optimizers = []
        schedulers = []
        for i in range(self.n_samples):
            parameters = [{'params': [self.bayes_nn[i].log_beta], 'lr': lr_noise},
                    {'params': self.bayes_nn[i].features.parameters()}]
            optimizer_i = torch.optim.Adam(parameters, lr=lr)
            optimizers.append(optimizer_i)
            schedulers.append(ReduceLROnPlateau(optimizer_i, 
                    mode='min', factor=0.1, patience=10, verbose=True))
        return optimizers, schedulers 
開發者ID:cics-nd,項目名稱:cnn-surrogate,代碼行數:19,代碼來源:svgd.py

示例7: get_optim

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def get_optim(lr):
    # Lower the learning rate on the VGG fully connected layers by 1/10th. It's a hack, but it helps
    # stabilize the models.
    fc_params = [p for n,p in detector.named_parameters() if n.startswith('roi_fmap') and p.requires_grad]
    non_fc_params = [p for n,p in detector.named_parameters() if not n.startswith('roi_fmap') and p.requires_grad]
    params = [{'params': fc_params, 'lr': lr / 10.0}, {'params': non_fc_params}]
    # params = [p for n,p in detector.named_parameters() if p.requires_grad]

    if conf.adam:
        optimizer = optim.Adadelta(params, weight_decay=conf.l2, lr=lr, eps=1e-3)
    else:
        optimizer = optim.SGD(params, weight_decay=conf.l2, lr=lr, momentum=0.9)

    #scheduler = StepLR(optimizer, step_size=1, gamma=0.5)
    scheduler = ReduceLROnPlateau(optimizer, 'max', patience=2, factor=0.5,
                                  verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1)
    return optimizer, scheduler 
開發者ID:KaihuaTang,項目名稱:VCTree-Scene-Graph-Generation,代碼行數:19,代碼來源:train_rels.py

示例8: test_scheduler_validate

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def test_scheduler_validate(ray_start_2_cpus):  # noqa: F811
    from torch.optim.lr_scheduler import ReduceLROnPlateau

    trainer = TorchTrainer(
        model_creator=model_creator,
        data_creator=data_creator,
        optimizer_creator=optimizer_creator,
        loss_creator=lambda config: nn.MSELoss(),
        scheduler_creator=lambda optimizer, cfg: ReduceLROnPlateau(optimizer),
        scheduler_step_freq="manual",
        training_operator_cls=_TestingOperator)
    trainer.update_scheduler(0.5)
    trainer.update_scheduler(0.5)
    assert all(
        trainer.apply_all_operators(
            lambda op: op.schedulers[0].last_epoch == 2))
    trainer.shutdown() 
開發者ID:ray-project,項目名稱:ray,代碼行數:19,代碼來源:test_torch.py

示例9: _init_optimizer

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def _init_optimizer(self):
        parameters = [p for p in self.network.parameters() if p.requires_grad]
        if self.config['use_bert'] and self.config.get('finetune_bert', None):
            parameters += [p for p in self.config['bert_model'].parameters() if p.requires_grad]
        if self.config['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(parameters, self.config['learning_rate'],
                                       momentum=self.config['momentum'],
                                       weight_decay=self.config['weight_decay'])
        elif self.config['optimizer'] == 'adam':
            self.optimizer = optim.Adam(parameters, lr=self.config['learning_rate'])
        elif self.config['optimizer'] == 'adamax':
            self.optimizer = optim.Adamax(parameters, lr=self.config['learning_rate'])
        else:
            raise RuntimeError('Unsupported optimizer: %s' % self.config['optimizer'])
        self.scheduler = ReduceLROnPlateau(self.optimizer, mode='max', factor=0.5, \
                    patience=2, verbose=True) 
開發者ID:hugochan,項目名稱:RL-based-Graph2Seq-for-NQG,代碼行數:18,代碼來源:model.py

示例10: __define_optimizer

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def __define_optimizer(self, learning_rate, weight_decay,
                           lr_drop_factor, lr_drop_patience, optimizer='Adam'):
        assert optimizer in ['RMSprop', 'Adam', 'Adadelta', 'SGD']

        parameters = ifilter(lambda p: p.requires_grad,
                             self.model.parameters())

        if optimizer == 'RMSprop':
            self.optimizer = optim.RMSprop(
                parameters, lr=learning_rate, weight_decay=weight_decay)
        elif optimizer == 'Adadelta':
            self.optimizer = optim.Adadelta(
                parameters, lr=learning_rate, weight_decay=weight_decay)
        elif optimizer == 'Adam':
            self.optimizer = optim.Adam(
                parameters, lr=learning_rate, weight_decay=weight_decay)
        elif optimizer == 'SGD':
            self.optimizer = optim.SGD(
                parameters, lr=learning_rate, momentum=0.9,
                weight_decay=weight_decay)

        self.lr_scheduler = ReduceLROnPlateau(
            self.optimizer, mode='min', factor=lr_drop_factor,
            patience=lr_drop_patience, verbose=True) 
開發者ID:Wizaron,項目名稱:instance-segmentation-pytorch,代碼行數:26,代碼來源:model.py

示例11: create_scheduler

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def create_scheduler(args, optimizer, datasets):
    if args.scheduler == 'step':
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=eval(args.milestones), gamma=args.lr_decay)
    elif args.scheduler == 'poly':
        total_step = (len(datasets['train']) / args.batch + 1) * args.epochs
        scheduler = lr_scheduler.LambdaLR(optimizer, lambda x: (1-x/total_step) ** args.power)
    elif args.scheduler == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=args.lr_decay, patience=args.patience)
    elif args.scheduler == 'constant':
        scheduler = lr_scheduler.LambdaLR(optimizer, lambda x: 1)
    elif args.scheduler == 'cosine':
        scheduler = lr_scheduler.CosineAnnealingLR(optimizer, args.T_max, args.min_lr)
    return scheduler 
開發者ID:miraiaroha,項目名稱:ACAN,代碼行數:15,代碼來源:scheduler.py

示例12: __init__

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def __init__(self, hidden_size, max_len, max_r, lang, path, task, lr, n_layers, dropout, unk_mask):
        super(Mem2Seq, self).__init__()
        self.name = "Mem2Seq"
        self.task = task
        self.input_size = lang.n_words
        self.output_size = lang.n_words
        self.hidden_size = hidden_size
        self.max_len = max_len ## max input
        self.max_r = max_r ## max responce len        
        self.lang = lang
        self.lr = lr
        self.n_layers = n_layers
        self.dropout = dropout
        self.unk_mask = unk_mask
        self.root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
        
        self.encoder = EncoderMemNN(lang.n_words, hidden_size, n_layers, self.dropout, self.unk_mask)
        self.decoder = DecoderMemNN(lang.n_words, hidden_size, n_layers, self.dropout, self.unk_mask)
        if path:
            logging.info("MODEL {} LOADED".format(str(path)))
            self.encoder.load_state_dict(torch.load(str(path)+'/enc.th'))
            self.decoder.load_state_dict(torch.load(str(path)+'/dec.th'))
            
        # Initialize optimizers and criterion
        self.encoder_optimizer = optim.Adam(self.encoder.parameters(), lr=lr)
        self.decoder_optimizer = optim.Adam(self.decoder.parameters(), lr=lr)
        self.scheduler = lr_scheduler.ReduceLROnPlateau(self.decoder_optimizer,mode='max',factor=0.5,patience=1,min_lr=0.0001, verbose=True)
        self.criterion = nn.MSELoss()
        self.loss = 0
        self.loss_ptr = 0
        self.loss_vac = 0
        self.print_every = 1
        self.batch_size = 0
        # Move models to GPU
        if USE_CUDA:
            self.encoder.cuda()
            self.decoder.cuda() 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:39,代碼來源:Mem2Seq.py

示例13: __init__

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def __init__(self, hidden_size, max_len, max_r, lang, path, lr, n_layers, dropout):
        super(Mem2Seq, self).__init__()
        self.name = "Mem2Seq"
        self.input_size = lang.n_words
        self.output_size = lang.n_words
        self.hidden_size = hidden_size
        self.max_len = max_len ## max input
        self.max_r = max_r ## max responce len        
        self.lang = lang
        self.lr = lr
        self.n_layers = n_layers
        self.dropout = dropout
        
        if path:
            if USE_CUDA:
                logging.info("MODEL {} LOADED".format(str(path)))
                self.encoder = torch.load(str(path)+'/enc.th')
                self.decoder = torch.load(str(path)+'/dec.th')
            else:
                logging.info("MODEL {} LOADED".format(str(path)))
                self.encoder = torch.load(str(path)+'/enc.th',lambda storage, loc: storage)
                self.decoder = torch.load(str(path)+'/dec.th',lambda storage, loc: storage)
        else:
            self.encoder = EncoderMemNN(lang.n_words, hidden_size, n_layers, self.dropout)
            self.decoder = DecoderrMemNN(lang.n_words, hidden_size, n_layers, self.dropout)
        # Initialize optimizers and criterion
        self.encoder_optimizer = optim.Adam(self.encoder.parameters(), lr=lr)
        self.decoder_optimizer = optim.Adam(self.decoder.parameters(), lr=lr)
        self.scheduler = lr_scheduler.ReduceLROnPlateau(self.decoder_optimizer,mode='max',factor=0.5,patience=1,min_lr=0.0001, verbose=True)
        self.criterion = nn.MSELoss()
        self.loss = 0
        self.loss_gate = 0
        self.loss_ptr = 0
        self.loss_vac = 0
        self.print_every = 1
        self.batch_size = 0
        # Move models to GPU
        if USE_CUDA:
            self.encoder.cuda()
            self.decoder.cuda() 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:42,代碼來源:Mem2Seq_NMT.py

示例14: get_scheduler

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def get_scheduler(optimizer, opt):
    """Return a learning rate scheduler

    Parameters:
        optimizer          -- the optimizer of the network
        opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
                              opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine

    For 'linear', we keep the same learning rate for the first <opt.niter> epochs
    and linearly decay the rate to zero over the next <opt.niter_decay> epochs.
    For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
    See https://pytorch.org/docs/stable/optim.html for more details.
    """
    if opt.lr_policy == 'linear':
        def lambda_rule(epoch):
            lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
            return lr_l
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step':
        scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
    elif opt.lr_policy == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
    elif opt.lr_policy == 'cosine':
        scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0)
    else:
        return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
    return scheduler 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:29,代碼來源:networks.py

示例15: get_scheduler

# 需要導入模塊: from torch.optim import lr_scheduler [as 別名]
# 或者: from torch.optim.lr_scheduler import ReduceLROnPlateau [as 別名]
def get_scheduler(optimizer, opt):
    if opt.lr_policy == 'lambda':
        def lambda_rule(epoch):
            lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
            return lr_l
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step':
        scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
    elif opt.lr_policy == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
    else:
        return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
    return scheduler 
開發者ID:joelmoniz,項目名稱:DepthNets,代碼行數:15,代碼來源:networks.py


注:本文中的torch.optim.lr_scheduler.ReduceLROnPlateau方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。