當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn.pack_padded_sequence方法代碼示例

本文整理匯總了Python中torch.nn.utils.rnn.pack_padded_sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.pack_padded_sequence方法的具體用法?Python rnn.pack_padded_sequence怎麽用?Python rnn.pack_padded_sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn.utils.rnn的用法示例。


在下文中一共展示了rnn.pack_padded_sequence方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, word, sentence_length):
        """
        :param word:
        :param sentence_length:
        :param desorted_indices:
        :return:
        """
        word, sentence_length, desorted_indices = prepare_pack_padded_sequence(word, sentence_length, device=self.device)
        x = self.embed(word)  # (N,W,D)
        x = self.dropout_embed(x)
        packed_embed = pack_padded_sequence(x, sentence_length, batch_first=True)
        x, _ = self.bilstm(packed_embed)
        x, _ = pad_packed_sequence(x, batch_first=True)
        x = x[desorted_indices]
        x = self.dropout(x)
        x = torch.tanh(x)
        logit = self.linear(x)
        return logit 
開發者ID:bamtercelboo,項目名稱:pytorch_NER_BiLSTM_CNN_CRF,代碼行數:20,代碼來源:BiLSTM.py

示例2: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, encoding, lengths):
        lengths = Variable(torch.LongTensor(lengths))
        if torch.cuda.is_available():
            lengths = lengths.cuda()
        if self.method == 'mean':
            encoding_pad = nn.utils.rnn.pack_padded_sequence(encoding, lengths.data.tolist(), batch_first=True)
            encoding = nn.utils.rnn.pad_packed_sequence(encoding_pad, batch_first=True, padding_value=0)[0]
            lengths = lengths.float().view(-1, 1)
            return encoding.sum(1) / lengths, None
        elif self.method == 'max':
            return encoding.max(1)  # [bsz, in_dim], [bsz, in_dim] (position)
        elif self.method == 'attn':
            size = encoding.size()  # [bsz, len, in_dim]
            x_flat = encoding.contiguous().view(-1, size[2])  # [bsz*len, in_dim]
            hbar = self.tanh(self.ws1(x_flat))  # [bsz*len, attn_hid]
            alphas = self.ws2(hbar).view(size[0], size[1])  # [bsz, len]
            alphas = nn.utils.rnn.pack_padded_sequence(alphas, lengths.data.tolist(), batch_first=True)
            alphas = nn.utils.rnn.pad_packed_sequence(alphas, batch_first=True, padding_value=-1e8)[0]
            alphas = functional.softmax(alphas, dim=1)  # [bsz, len]
            alphas = alphas.view(size[0], 1, size[1])  # [bsz, 1, len]
            return torch.bmm(alphas, encoding).squeeze(1), alphas  # [bsz, in_dim], [bsz, len]
        elif self.method == 'last':
            return torch.cat([encoding[i][lengths[i] - 1] for i in range(encoding.size(0))], dim=0), None 
開發者ID:ExplorerFreda,項目名稱:VSE-C,代碼行數:25,代碼來源:model.py

示例3: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, x, x_len, atten_mask):
        CoAtt = torch.bmm(x, x.transpose(1, 2))
        CoAtt = atten_mask.unsqueeze(1) * CoAtt - (1 - atten_mask).unsqueeze(1) * INF
        CoAtt = torch.softmax(CoAtt, dim=-1)
        new_x = torch.cat([torch.bmm(CoAtt, x), x], -1)

        sorted_x_len, indx = torch.sort(x_len, 0, descending=True)
        new_x = pack_padded_sequence(new_x[indx], sorted_x_len.data.tolist(), batch_first=True)

        h0 = to_cuda(torch.zeros(2, x_len.size(0), self.hidden_size // 2), self.use_cuda)
        c0 = to_cuda(torch.zeros(2, x_len.size(0), self.hidden_size // 2), self.use_cuda)
        packed_h, (packed_h_t, _) = self.model(new_x, (h0, c0))

        # restore the sorting
        _, inverse_indx = torch.sort(indx, 0)
        packed_h_t = torch.cat([packed_h_t[i] for i in range(packed_h_t.size(0))], -1)
        restore_packed_h_t = packed_h_t[inverse_indx]
        output = restore_packed_h_t
        return output 
開發者ID:hugochan,項目名稱:BAMnet,代碼行數:21,代碼來源:modules.py

示例4: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, src, lengths=None, encoder_state=None):
        "See :obj:`EncoderBase.forward()`"
        self._check_args(src, lengths, encoder_state)

        emb = self.embeddings(src)
        s_len, batch, emb_dim = emb.size()

        packed_emb = emb
        if lengths is not None and not self.no_pack_padded_seq:
            # Lengths data is wrapped inside a Variable.
            lengths = lengths.view(-1).tolist()
            packed_emb = pack(emb, lengths)

        memory_bank, encoder_final = self.rnn(packed_emb, encoder_state)

        if lengths is not None and not self.no_pack_padded_seq:
            memory_bank = unpack(memory_bank)[0]

        if self.use_bridge:
            encoder_final = self._bridge(encoder_final)
        return encoder_final, memory_bank 
開發者ID:xiadingZ,項目名稱:video-caption-openNMT.pytorch,代碼行數:23,代碼來源:Models.py

示例5: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, inputs):
        x, seq_lengths = inputs

        embedding = self.embeddings(x).permute(0, 2, 1)

        conv1 = self.conv1(embedding).permute(0, 2, 1)
        conv2 = self.conv2(embedding).permute(0, 2, 1)

        out = torch.stack((conv1, conv2), 3)
        out, _ = torch.max(out, 3)

        packed_input = pack_padded_sequence(
            out,
            seq_lengths.cpu().numpy(),
            batch_first=True
        )

        packed_output, (ht, ct) = self.lstm(packed_input)
        out, input_sizes = pad_packed_sequence(packed_output, batch_first=True)
        out = F.relu(self.linear1(out))
        out = self.linear2(out)

        out = out.view(-1)

        return out 
開發者ID:PyThaiNLP,項目名稱:attacut,代碼行數:27,代碼來源:seq_ch_conv_lstm.py

示例6: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, inputs):
        x, seq_lengths = inputs

        embedding = self.embeddings(x)
        packed_input = pack_padded_sequence(
            embedding,
            seq_lengths.cpu().numpy(),
            batch_first=True
        )

        packed_output, (ht, ct) = self.lstm(packed_input)
        output, input_sizes = pad_packed_sequence(packed_output, batch_first=True)

        out = F.relu(self.linear1(output))
        out = self.linear2(out)
        out = out.view(-1)

        return out 
開發者ID:PyThaiNLP,項目名稱:attacut,代碼行數:20,代碼來源:seq_lstm.py

示例7: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, inputs):
        x, seq_lengths = inputs

        embedding = self.embeddings(x)
        packed_input = pack_padded_sequence(
            embedding,
            seq_lengths.cpu().numpy(),
            batch_first=True
        )

        packed_output, (ht, ct) = self.lstm(packed_input)
        output, input_sizes = pad_packed_sequence(packed_output, batch_first=True)

        output = F.relu(self.conv1(output.permute(0, 2, 1)).permute(0, 2, 1))

        out = F.relu(self.linear1(output))
        out = self.linear2(out)
        out = out.view(-1)

        return out 
開發者ID:PyThaiNLP,項目名稱:attacut,代碼行數:22,代碼來源:seq_ch_lstm_conv.py

示例8: _defns_to_packed_seq

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def _defns_to_packed_seq(defns, field, cuda=torch.cuda.is_available(), volatile=False):
    """
    Pads a list of definitions (in sorted order!)
    :param tokenized_defns: List of lists containing tokenized definitions OR
                            List of string containind definitions
    :param field: Contains padding and vocab functions.
    :param cuda: if true, we'll cudaize it
    :param volatile:
    :return: PackedSequence with a Variable.
    """
    tokenized_defns = [field.preprocess(x) for x in defns]
    defns_padded, lengths = field.pad(tokenized_defns)
    if not all(lengths[i] >= lengths[i + 1] for i in range(len(lengths) - 1)):
        raise ValueError("Sequences must be in decreasing order")

    defns_tensor = torch.LongTensor([
        [field.vocab.stoi[x] for x in ex] for ex in defns_padded
    ])

    defns_packed_ = pack_padded_sequence(defns_tensor, lengths, batch_first=True)
    packed_data = Variable(defns_packed_.data, volatile=volatile)
    if cuda:
        packed_data = packed_data.cuda()
    return PackedSequence(packed_data, defns_packed_.batch_sizes) 
開發者ID:uwnlp,項目名稱:verb-attributes,代碼行數:26,代碼來源:bucket_iterator.py

示例9: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, src, lengths=None):
        "See :obj:`EncoderBase.forward()`"
        self._check_args(src, lengths)

        emb = self.embeddings(src)
        # s_len, batch, emb_dim = emb.size()

        packed_emb = emb
        if lengths is not None and not self.no_pack_padded_seq:
            # Lengths data is wrapped inside a Tensor.
            lengths_list = lengths.view(-1).tolist()
            packed_emb = pack(emb, lengths_list)

        memory_bank, encoder_final = self.rnn(packed_emb)

        if lengths is not None and not self.no_pack_padded_seq:
            memory_bank = unpack(memory_bank)[0]

        if self.use_bridge:
            encoder_final = self._bridge(encoder_final)
        return encoder_final, memory_bank, lengths 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:23,代碼來源:rnn_encoder.py

示例10: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, x, lengths):
        """Handles variable size captions
        """
        # Embed word ids to vectors
        x = self.embed(x)
        packed = pack_padded_sequence(x, lengths, batch_first=True)

        # Forward propagate RNN
        out, _ = self.rnn(packed)

        # Reshape *final* output to (batch_size, hidden_size)
        padded = pad_packed_sequence(out, batch_first=True)
        cap_emb, cap_len = padded

        if self.use_bi_gru:
            cap_emb = (cap_emb[:,:,:cap_emb.size(2)/2] + cap_emb[:,:,cap_emb.size(2)/2:])/2

        # normalization in the joint embedding space
        if not self.no_txtnorm:
            cap_emb = l2norm(cap_emb, dim=-1)

        return cap_emb, cap_len 
開發者ID:kuanghuei,項目名稱:SCAN,代碼行數:24,代碼來源:model.py

示例11: apply_packed_sequence

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def apply_packed_sequence(rnn, embedding, lengths):
    """ Runs a forward pass of embeddings through an rnn using packed sequence.
    Args:
       rnn: The RNN that that we want to compute a forward pass with.
       embedding (FloatTensor b x seq x dim): A batch of sequence embeddings.
       lengths (LongTensor batch): The length of each sequence in the batch.

    Returns:
       output: The output of the RNN `rnn` with input `embedding`
    """
    # Sort Batch by sequence length
    lengths_sorted, permutation = torch.sort(lengths, descending=True)
    embedding_sorted = embedding[permutation]

    # Use Packed Sequence
    embedding_packed = pack(embedding_sorted, lengths_sorted, batch_first=True)
    outputs_packed, (hidden, cell) = rnn(embedding_packed)
    outputs_sorted, _ = unpack(outputs_packed, batch_first=True)
    # Restore original order
    _, permutation_rev = torch.sort(permutation, descending=False)
    outputs = outputs_sorted[permutation_rev]
    hidden, cell = hidden[:, permutation_rev], cell[:, permutation_rev]
    return outputs, (hidden, cell) 
開發者ID:Unbabel,項目名稱:OpenKiwi,代碼行數:25,代碼來源:utils.py

示例12: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, inp, l, null_mask):
        """

        :param inp: shape = (B, T, emb_dim)
        :param null_mask: shape = (B, T)
        :return:
        """
        B = inp.shape[0]
        T = inp.shape[1]
        inp = inp.transpose(0, 1)  # shape = (20, n_batch, emb_dim)
        packed_emb = pack(inp, l)
        outputs, h_n = self.Encoder(packed_emb)  # h_n.shape = (n_layers * n_dir, n_batch, dim_h)
        outputs = unpack(outputs, total_length=T)[0]  # shape = (20, n_batch, dim_h * n_dir)
        h_n = h_n.view(self.n_layers, self.n_dir, B, self.dim_h).transpose(1, 2).transpose(2, 3).contiguous().view(self.n_layers, B, -1)
        # shape = (n_layers, n_batch, dim_h * n_dir)
        h_n = h_n[-1, :, :]  # shape = (n_batch, dim_h * n_dir)
        context, att_weight = self.Attention(h_n,
                                             outputs.transpose(0, 1),
                                             null_mask)  # (n_batch, dim_h * n_dir), (n_batch, 20)
        cls = self.MLP(context).squeeze(1)  # shape = (n_batch, )

        return cls, att_weight 
開發者ID:ChenWu98,項目名稱:Point-Then-Operate,代碼行數:24,代碼來源:attention_classifier.py

示例13: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, input_raw, pack=False, input_len=None):
        if self.has_input:
            input = self.input(input_raw)
            input = self.relu(input)
        else:
            input = input_raw
        if pack:
            input = pack_padded_sequence(input, input_len, batch_first=True)
        output_raw, self.hidden = self.rnn(input, self.hidden)
        if pack:
            output_raw = pad_packed_sequence(output_raw, batch_first=True)[0]
        if self.has_output:
            output_raw = self.output(output_raw)
        # return hidden state at each time step
        return output_raw

# plain GRU model 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:19,代碼來源:model.py

示例14: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, input, hidden=None):
        """
        input: (wrap(srcBatch), wrap(srcBioBatch), lengths)
        """
        lengths = input[-1].data.view(-1).tolist()  # lengths data is wrapped inside a Variable
        wordEmb = self.word_lut(input[0])
        emb = pack(wordEmb, lengths)
        outputs, hidden_t = self.rnn(emb, hidden)
        if isinstance(input, tuple):
            outputs = unpack(outputs)[0]
        forward_last = hidden_t[0]
        backward_last = hidden_t[1]
        time_step = outputs.size(0)
        batch_size = outputs.size(1)
        sentence_vector = torch.cat((forward_last, backward_last), dim=1)
        exp_buf = torch.cat((outputs, sentence_vector.unsqueeze(0).expand_as(outputs)), dim=2)
        selective_value = self.sigmoid(self.selective_gate(exp_buf.view(-1, exp_buf.size(2))))
        selective_value = selective_value.view(time_step, batch_size, -1)
        outputs = outputs * selective_value
        return hidden_t, outputs 
開發者ID:magic282,項目名稱:SEASS,代碼行數:22,代碼來源:Models.py

示例15: forward

# 需要導入模塊: from torch.nn.utils import rnn [as 別名]
# 或者: from torch.nn.utils.rnn import pack_padded_sequence [as 別名]
def forward(self, embedded, hidden, input_lengths=None):
    """
    :param embedded: (src seq len, batch size, embed size)
    :param hidden: (num directions, batch size, encoder hidden size)
    :param input_lengths: list containing the non-padded length of each sequence in this batch;
                          if set, we use `PackedSequence` to skip the PAD inputs and leave the
                          corresponding encoder states as zeros
    :return: (src seq len, batch size, hidden size * num directions = decoder hidden size)

    Perform multi-step encoding.
    """
    if input_lengths is not None:
      embedded = pack_padded_sequence(embedded, input_lengths)

    output, hidden = self.gru(embedded, hidden)

    if input_lengths is not None:
      output, _ = pad_packed_sequence(output)

    if self.num_directions > 1:
      # hidden: (num directions, batch, hidden) => (1, batch, hidden * 2)
      batch_size = hidden.size(1)
      hidden = hidden.transpose(0, 1).contiguous().view(1, batch_size,
                                                        self.hidden_size * self.num_directions)
    return output, hidden 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:27,代碼來源:model.py


注:本文中的torch.nn.utils.rnn.pack_padded_sequence方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。