本文整理匯總了Python中torch.nn.parallel.scatter_gather.scatter_kwargs方法的典型用法代碼示例。如果您正苦於以下問題:Python scatter_gather.scatter_kwargs方法的具體用法?Python scatter_gather.scatter_kwargs怎麽用?Python scatter_gather.scatter_kwargs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn.parallel.scatter_gather
的用法示例。
在下文中一共展示了scatter_gather.scatter_kwargs方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _data_parallel_wrapper
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def _data_parallel_wrapper(func_name, device_ids, output_device):
r"""
這個函數是用於對需要多卡執行的函數的wrapper函數。參考的nn.DataParallel的forward函數
:param str, func_name: 對network中的這個函數進行多卡運行
:param device_ids: nn.DataParallel中的device_ids
:param output_device: nn.DataParallel中的output_device
:return:
"""
def wrapper(network, *inputs, **kwargs):
inputs, kwargs = scatter_kwargs(inputs, kwargs, device_ids, dim=0)
if len(device_ids) == 1:
return getattr(network, func_name)(*inputs[0], **kwargs[0])
replicas = replicate(network, device_ids[:len(inputs)])
outputs = parallel_apply(replicas, func_name, inputs, kwargs, device_ids[:len(replicas)])
return gather(outputs, output_device)
return wrapper
示例2: scatter
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def scatter(self, inputs, kwargs, device_ids):
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
示例3: _data_parallel
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def _data_parallel(self, batch):
u"""
Do the forward pass using multiple GPUs. This is a simplification
of torch.nn.parallel.data_parallel to support the allennlp model
interface.
"""
inputs, module_kwargs = scatter_kwargs((), batch, self._cuda_devices, 0)
used_device_ids = self._cuda_devices[:len(inputs)]
replicas = replicate(self._model, used_device_ids)
outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids)
# Only the 'loss' is needed.
# a (num_gpu, ) tensor with loss on each GPU
losses = gather([output[u'loss'].unsqueeze(0) for output in outputs], used_device_ids[0], 0)
return {u'loss': losses.mean()}
示例4: scatter
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def scatter(self, inputs, kwargs, device_ids):
try:
params = kwargs.pop('params')
except KeyError:
return super(DataParallel, self).scatter(inputs, kwargs, device_ids)
inputs_, kwargs_ = scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
# Add params argument unchanged back in kwargs
replicas = self._replicate_params(params, inputs_, device_ids,
detach=not torch.is_grad_enabled())
kwargs_ = tuple(dict(params=replica, **kwarg)
for (kwarg, replica) in zip(kwargs_, replicas))
return inputs_, kwargs_
示例5: _data_parallel
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def _data_parallel(self, batch):
"""
Do the forward pass using multiple GPUs. This is a simplification
of torch.nn.parallel.data_parallel to support the allennlp model
interface.
"""
inputs, module_kwargs = scatter_kwargs((), batch, self._cuda_devices, 0)
used_device_ids = self._cuda_devices[:len(inputs)]
replicas = replicate(self._model, used_device_ids)
outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids)
# Only the 'loss' is needed.
# a (num_gpu, ) tensor with loss on each GPU
losses = gather([output['loss'].unsqueeze(0) for output in outputs], used_device_ids[0], 0)
return {'loss': losses.mean()}
示例6: scatter
# 需要導入模塊: from torch.nn.parallel import scatter_gather [as 別名]
# 或者: from torch.nn.parallel.scatter_gather import scatter_kwargs [as 別名]
def scatter(self, inputs, kwargs, device_ids):
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)