本文整理匯總了Python中torch.nn.parallel._functions.Gather.apply方法的典型用法代碼示例。如果您正苦於以下問題:Python Gather.apply方法的具體用法?Python Gather.apply怎麽用?Python Gather.apply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn.parallel._functions.Gather
的用法示例。
在下文中一共展示了Gather.apply方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dict_gather
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def dict_gather(outputs, target_device, dim=0):
"""
Gathers variables from different GPUs on a specified device
(-1 means the CPU), with dictionary support.
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, Variable):
# MJY(20180330) HACK:: force nr_dims > 0
if out.dim() == 0:
outputs = [o.unsqueeze(0) for o in outputs]
return Gather.apply(target_device, dim, *outputs)
elif out is None:
return None
elif isinstance(out, collections.Mapping):
return {k: gather_map([o[k] for o in outputs]) for k in out}
elif isinstance(out, collections.Sequence):
return type(out)(map(gather_map, zip(*outputs)))
return gather_map(outputs)
示例2: dict_gather
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def dict_gather(outputs, target_device, dim=0):
"""
Gathers variables from different GPUs on a specified device
(-1 means the CPU), with dictionary support.
"""
def gather_map(outputs):
out = outputs[0]
if torch.is_tensor(out):
# MJY(20180330) HACK:: force nr_dims > 0
if out.dim() == 0:
outputs = [o.unsqueeze(0) for o in outputs]
return Gather.apply(target_device, dim, *outputs)
elif out is None:
return None
elif isinstance(out, collections.Mapping):
return {k: gather_map([o[k] for o in outputs]) for k in out}
elif isinstance(out, collections.Sequence):
return type(out)(map(gather_map, zip(*outputs)))
return gather_map(outputs)
示例3: gather
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def gather(outputs, target_device, dim=0):
r"""
Gathers tensors from different GPUs on a specified device
(-1 means the CPU).
"""
def gather_map(outputs):
out = outputs[0]
if torch.is_tensor(out):
return Gather.apply(target_device, dim, *outputs)
if out is None:
return None
if isinstance(out, dict):
if not all((len(out) == len(d) for d in outputs)):
raise ValueError('All dicts must have the same number of keys')
return type(out)(((k, gather_map([d[k] for d in outputs]))
for k in out))
return type(out)(map(gather_map, zip(*outputs)))
# Recursive function calls like this create reference cycles.
# Setting the function to None clears the refcycle.
try:
return gather_map(outputs)
finally:
gather_map = None
示例4: dict_gather_v1
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def dict_gather_v1(outputs, target_device, dim=0):
"""
Gathers variables from different GPUs on a specified device
(-1 means the CPU), with dictionary support.
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, Variable) or torch.is_tensor(out):
if out.dim() == 0:
outputs = [o.unsqueeze(0) for o in outputs]
return Gather.apply(target_device, dim, *outputs)
elif out is None:
return None
elif isinstance(out, collections.Mapping):
return {k: gather_map([o[k] for o in outputs]) for k in out}
elif isinstance(out, six.string_types):
return outputs
elif isinstance(out, collections.Sequence):
return type(out)(map(gather_map, zip(*outputs)))
return outputs
return gather_map(outputs)
示例5: tnn_gather
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def tnn_gather(outputs, target_device, dim=0):
r"""
Gathers variables from different GPUs on a specified device
(-1 means the CPU).
"""
def gather_map(outputs):
if isinstance(outputs, Variable):
if target_device == -1:
return outputs.cpu()
return outputs.cuda(target_device)
out = outputs[0]
if isinstance(out, Variable):
return Gather.apply(target_device, dim, *outputs)
if out is None:
return None
if isinstance(out, ScatterList):
return tuple(map(gather_map, itertools.chain(*outputs)))
return type(out)(map(gather_map, zip(*outputs)))
return gather_map(outputs)
示例6: scatter
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def scatter(inputs, target_gpus, dim=0):
r"""
Slices tensors into approximately equal chunks and
distributes them across given GPUs. Duplicates
references to objects that are not tensors.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
return Scatter.apply(target_gpus, None, dim, obj)
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return list(map(list, zip(*map(scatter_map, obj))))
if isinstance(obj, dict) and len(obj) > 0:
return list(map(type(obj), zip(*map(scatter_map, obj.items()))))
if isinstance(obj, PackedSequence):
return packed_sequence_scatter(obj, target_gpus)
return [obj for _ in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
return scatter_map(inputs)
finally:
scatter_map = None
示例7: gather
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def gather(outputs, target_device, dim=0):
r"""
Gathers tensors from different GPUs on a specified device
(-1 means the CPU).
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, torch.Tensor):
return Gather.apply(target_device, dim, *outputs)
if out is None:
return None
if isinstance(out, dict):
if not all((len(out) == len(d) for d in outputs)):
raise ValueError('All dicts must have the same number of keys')
return type(out)(((k, gather_map([d[k] for d in outputs]))
for k in out))
if isinstance(out, PackedSequence):
return packed_sequence_gather(outputs, target_device)
return type(out)(map(gather_map, zip(*outputs)))
# Recursive function calls like this create reference cycles.
# Setting the function to None clears the refcycle.
try:
return gather_map(outputs)
finally:
gather_map = None
示例8: gather_res
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def gather_res(outputs, target_device, dim=0):
"""
Assuming the signatures are the same accross results!
"""
out = outputs[0]
args = {field: Gather.apply(target_device, dim, *[getattr(o, field) for o in outputs])
for field, v in out.__dict__.items() if v is not None}
return type(out)(**args)
示例9: apply
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def apply(self, feed_dict, key):
raise NotImplementedError()
示例10: _stack_raw
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def _stack_raw(self, values, out, maybe_cuda, is_concat=False):
if self.mode is VarLengthCollateV3Mode.GATHER and maybe_cuda:
if values[0].dim() == 0:
values = [o.unsqueeze(0) for o in values]
return Gather.apply(self.gather_device, self.gather_dim, *values)
else:
if is_concat:
return torch.cat(values, 0, out=out)
else:
return torch.stack(values, 0, out=out)
示例11: scatter
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def scatter(inputs, target_gpus, dim=0):
r"""
Slices variables into approximately equal chunks and
distributes them across given GPUs. Duplicates
references to objects that are not variables. Does not
support Tensors.
"""
def scatter_map(obj):
if isinstance(obj, Variable):
# print('var')
return Scatter.apply(target_gpus, None, dim, obj)
assert not torch.is_tensor(obj), "Tensors not supported in scatter."
if isinstance(obj, ScatterList):
# print('target_gpus:', target_gpus, 'obj:', len(obj))
# assert len(obj) == len(target_gpus)
chunk_size = int(ceil(float(len(obj)) / float(len(target_gpus))))
# print('scatterlist')
# print (chunk_size, len(obj))
return [obj[i*chunk_size: (i+1)*chunk_size] for i in range(len(target_gpus))]
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return list(map(list, zip(*map(scatter_map, obj))))
if isinstance(obj, dict) and len(obj) > 0:
return list(map(type(obj), zip(*map(scatter_map, obj.items()))))
# print('others')
return [obj for targets in target_gpus]
return scatter_map(inputs)
示例12: __call__
# 需要導入模塊: from torch.nn.parallel._functions import Gather [as 別名]
# 或者: from torch.nn.parallel._functions.Gather import apply [as 別名]
def __call__(self, batch, flatten_key=None, layout_spec=None):
if flatten_key is not None and flatten_key in self.layout:
layout_spec = self.layout[flatten_key]
if layout_spec is not None and layout_spec.type is DataLayoutType.SKIP:
return batch
error_msg = "Batch must contain tensors, numbers, dicts or lists; found {}."
elem_type = type(batch[0])
if layout_spec is not None:
assert (
torch.is_tensor(batch[0]) or
(elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_')
), 'Invalid layout type for: {}.'.format(flatten_key)
if torch.is_tensor(batch[0]):
return self._stack(batch, layout_spec, maybe_cuda=True)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return self._stack([torch.from_numpy(b) for b in batch], layout_spec, maybe_cuda=False)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_types):
return batch
elif isinstance(batch[0], collections.Mapping):
result = dict()
for key in batch[0]:
values = [d[key] for d in batch]
next_key = key if flatten_key is None else f'{flatten_key}.{key}'
values = self(values, flatten_key=next_key, layout_spec=layout_spec)
if isinstance(values, _VarLengthCollateV3Stack):
values.apply(result, key)
else:
result[key] = values
return result
elif isinstance(batch[0], collections.Sequence):
transposed = zip(*batch)
# Add .{index} only if it's inside a dict already.
return [
self(samples, flatten_key=None if flatten_key is None else f'{flatten_key}.{i}',
layout_spec=layout_spec)
for i, samples in enumerate(transposed)
]
raise TypeError((error_msg.format(type(batch[0]))))