當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.Threshold方法代碼示例

本文整理匯總了Python中torch.nn.Threshold方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.Threshold方法的具體用法?Python nn.Threshold怎麽用?Python nn.Threshold使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.Threshold方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def get_model(load_weights = True):
    deepsea_cpu = nn.Sequential( # Sequential,
        nn.Conv2d(4,320,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(320,480,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(480,960,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.Dropout(0.5),
        Lambda(lambda x: x.view(x.size(0),-1)), # Reshape,
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear,
        nn.Threshold(0, 1e-06),
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear,
        nn.Sigmoid(),
    )
    if load_weights:
        deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth'))
    return nn.Sequential(ReCodeAlphabet(), deepsea_cpu) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model_architecture.py

示例2: get_seqpred_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def get_seqpred_model(load_weights = True):
    deepsea_cpu = nn.Sequential( # Sequential,
        nn.Conv2d(4,320,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(320,480,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(480,960,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.Dropout(0.5),
        Lambda(lambda x: x.view(x.size(0),-1)), # Reshape,
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear,
        nn.Threshold(0, 1e-06),
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear,
        nn.Sigmoid(),
    )
    if load_weights:
        deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth'))
    return nn.Sequential(ReCodeAlphabet(), ConcatenateRC(), deepsea_cpu, AverageRC()) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model_architecture.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self):
        super().__init__()
        self.fix_neg = nn.Threshold(0., 1e-8) 
開發者ID:yoyololicon,項目名稱:pytorch-NMF,代碼行數:5,代碼來源:base.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self, num_resblocks,final_len):
        super(CAEP, self).__init__()
        self.num_resblocks = num_resblocks
        self.threshold = torch.Tensor([1e-4])
        self.prune = False

        # Encoder
        self.E_Conv_1 = conv_same(3, 32)  # 3,128,128 => 32,128,128
        self.E_PReLU_1 = nn.PReLU()
        self.E_Conv_2 = conv_downsample(32, 64)  # 32,128,128 => 64,64,64
        self.E_PReLU_2 = nn.PReLU()
        self.E_Conv_3 = conv_same(64, 128)  # 64,64,64 => 128,64,64
        self.E_PReLU_3 = nn.PReLU()
        self.E_Res = res_layers(128, num_blocks=self.num_resblocks)
        self.E_Conv_4 = conv_downsample(128, 64)  # 128,64,64 => 64,32,32
        self.E_Conv_5 = conv_downsample(64, 32)
        self.E_Conv_6 = conv_same(32, final_len)

        self.Pruner = nn.Threshold(self.threshold, 0, inplace=True)

        # max_bpp = 32*16*16/128/128 * bits per int = 1 * bits per int

        # Decoder
        self.D_SubPix_00 = sub_pix(final_len, 32, 1)
        self.D_SubPix_0 = sub_pix(32, 64, 2)  # for fine tuning
        self.D_SubPix_1 = sub_pix(64, 128, 2)  # 64,32,32 => 128,64,64
        self.D_PReLU_1 = nn.PReLU()
        self.D_Res = res_layers(128, num_blocks=self.num_resblocks)
        self.D_SubPix_2 = sub_pix(128, 64, 1)  # 128,64,64 => 64,64,64
        self.D_PReLU_2 = nn.PReLU()
        self.D_SubPix_3 = sub_pix(64, 32, 2)  # 64,64,64 => 32,128,128
        self.D_PReLU_3 = nn.PReLU()
        self.D_SubPix_4 = sub_pix(32, 3, 1)  # 32,128,128 => 3,128,128
        self.tanh = nn.Tanh()

        self.__init_parameters__() 
開發者ID:JasonZHM,項目名稱:CAE-ADMM,代碼行數:38,代碼來源:model.py

示例5: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        #x = nn.Threshold(0.2, 0.0)#ActivationZeroThreshold(x)
        x = self.fc3(x)
        return x 
開發者ID:cornell-zhang,項目名稱:dnn-quant-ocs,代碼行數:11,代碼來源:simplenet_cifar.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self, debias_model, tagging_model):
        super(JointModel, self).__init__()
    
        # TODO SHARING EMBEDDINGS FROM DEBIAS
        self.debias_model = debias_model
        self.tagging_model = tagging_model

        self.token_sm = nn.Softmax(dim=2)
        self.time_sm = nn.Softmax(dim=1)
        self.tok_threshold = nn.Threshold(
            ARGS.zero_threshold,
            -10000.0 if ARGS.sequence_softmax else 0.0) 
開發者ID:rpryzant,項目名稱:neutralizing-bias,代碼行數:14,代碼來源:model.py

示例7: createScoreBranch

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def createScoreBranch(self):
        scoreBranch = nn.Sequential(
            nn.Dropout(0.5),
            nn.Conv2d(512, 1024, 1),
            nn.Threshold(0, 1e-6),  # do not know why
            nn.Dropout(0.5),
            nn.Conv2d(1024, 1, 1),
        )
        return scoreBranch 
開發者ID:foolwood,項目名稱:deepmask-pytorch,代碼行數:11,代碼來源:DeepMask.py

示例8: get_activation_fn

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def get_activation_fn(name):
    """ PyTorch built-in activation functions """

    activation_functions = {
        "linear": lambda: lambda x: x,
        "relu": nn.ReLU,
        "relu6": nn.ReLU6,
        "elu": nn.ELU,
        "prelu": nn.PReLU,
        "leaky_relu": nn.LeakyReLU,
        "threshold": nn.Threshold,
        "hardtanh": nn.Hardtanh,
        "sigmoid": nn.Sigmoid,
        "tanh": nn.Tanh,
        "log_sigmoid": nn.LogSigmoid,
        "softplus": nn.Softplus,
        "softshrink": nn.Softshrink,
        "softsign": nn.Softsign,
        "tanhshrink": nn.Tanhshrink,
    }

    if name not in activation_functions:
        raise ValueError(
            f"'{name}' is not included in activation_functions. use below one. \n {activation_functions.keys()}"
        )

    return activation_functions[name] 
開發者ID:naver,項目名稱:claf,代碼行數:29,代碼來源:activation.py

示例9: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self):
        super(LayerThresholdTest, self).__init__()
        self.threshold = random.random()
        self.value = self.threshold + random.random()
        self.thresh = nn.Threshold(self.threshold, self.value) 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:7,代碼來源:threshold.py

示例10: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self, V, rank, max_iterations=200000, tolerance=1e-8, test_conv=1000, gpu_id=0, seed=None,
                 init_method='nndsvd', floating_point_precision='float', min_iterations=2000):

        """
        Run non-negative matrix factorisation using GPU. Uses beta-divergence.

        Args:
          V: Matrix to be factorised
          rank: (int) number of latent dimensnions to use in factorisation
          max_iterations: (int) Maximum number of update iterations to use during fitting
          tolerance: tolerance to use in convergence tests. Lower numbers give longer times to convergence
          test_conv: (int) How often to test for convergnce
          gpu_id: (int) Which GPU device to use
          seed: random seed, if None (default) datetime is used
          init_method: how to initialise basis and coefficient matrices, options are:
            - random (will always be the same if seed != None)
            - NNDSVD
            - NNDSVDa (fill in the zero elements with the average),
            - NNDSVDar (fill in the zero elements with random values in the space [0:average/100]).
          floating_point_precision: (string or type). Can be `double`, `float` or any type/string which
              torch can interpret.
          min_iterations: the minimum number of iterations to execute before termination. Useful when using
              fp32 tensors as convergence can happen too early.
        """
        #torch.cuda.set_device(gpu_id)
        
        
            
        if seed is None:
            seed = datetime.now().timestamp()

        if floating_point_precision == 'float':
            self._tensor_type = torch.FloatTensor
        elif floating_point_precision == 'double':
            self._tensor_type = torch.DoubleTensor
        else:
            self._tensor_type = floating_point_precision

        torch.manual_seed(seed)
        #torch.cuda.manual_seed(seed)

        self.max_iterations = max_iterations
        self.min_iterations = min_iterations

        # If V is not in a batch, put it in a batch of 1
        if len(V.shape) == 2:
            V = V[None, :, :]

        self._V = V.type(self._tensor_type)
        self._fix_neg = nn.Threshold(0., 1e-8)
        self._tolerance = tolerance
        self._prev_loss = None
        self._iter = 0
        self._test_conv = test_conv
        #self._gpu_id = gpu_id
        self._rank = rank
        self._W, self._H = self._initialise_wh(init_method) 
開發者ID:AlexandrovLab,項目名稱:SigProfilerExtractor,代碼行數:59,代碼來源:nmf_cpu.py

示例11: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Threshold [as 別名]
def __init__(self, V, rank, max_iterations=200000, tolerance=1e-8, test_conv=1000, gpu_id=0, seed=None,
                 init_method='nndsvd', floating_point_precision='float', min_iterations=2000):

        """
        Run non-negative matrix factorisation using GPU. Uses beta-divergence.

        Args:
          V: Matrix to be factorised
          rank: (int) number of latent dimensnions to use in factorisation
          max_iterations: (int) Maximum number of update iterations to use during fitting
          tolerance: tolerance to use in convergence tests. Lower numbers give longer times to convergence
          test_conv: (int) How often to test for convergnce
          gpu_id: (int) Which GPU device to use
          seed: random seed, if None (default) datetime is used
          init_method: how to initialise basis and coefficient matrices, options are:
            - random (will always be the same if seed != None)
            - NNDSVD
            - NNDSVDa (fill in the zero elements with the average),
            - NNDSVDar (fill in the zero elements with random values in the space [0:average/100]).
          floating_point_precision: (string or type). Can be `double`, `float` or any type/string which
              torch can interpret.
          min_iterations: the minimum number of iterations to execute before termination. Useful when using
              fp32 tensors as convergence can happen too early.
        """
        torch.cuda.set_device(gpu_id)
        
        
        
        if seed is None:
            seed = datetime.now().timestamp()

        if floating_point_precision == 'float':
            self._tensor_type = torch.FloatTensor
        elif floating_point_precision == 'double':
            self._tensor_type = torch.DoubleTensor
        else:
            self._tensor_type = floating_point_precision

        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)

        self.max_iterations = max_iterations
        self.min_iterations = min_iterations

        # If V is not in a batch, put it in a batch of 1
        if len(V.shape) == 2:
            V = V[None, :, :]

        self._V = V.type(self._tensor_type).cuda()
        self._fix_neg = nn.Threshold(0., 1e-8)
        self._tolerance = tolerance
        self._prev_loss = None
        self._iter = 0
        self._test_conv = test_conv
        self._gpu_id = gpu_id
        self._rank = rank
        self._W, self._H = self._initialise_wh(init_method) 
開發者ID:AlexandrovLab,項目名稱:SigProfilerExtractor,代碼行數:59,代碼來源:nmf_gpu.py


注:本文中的torch.nn.Threshold方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。