當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.Sequential方法代碼示例

本文整理匯總了Python中torch.nn.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.Sequential方法的具體用法?Python nn.Sequential怎麽用?Python nn.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'):
    super(ImageDecoder, self).__init__()

    ngf = ngf * (2 ** (n_layers - 2))
    layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False),
              nn.BatchNorm2d(ngf),
              nn.ReLU(True)]

    for i in range(1, n_layers - 1):
      layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False),
                 nn.BatchNorm2d(ngf // 2),
                 nn.ReLU(True)]
      ngf = ngf // 2

    layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)]
    if activation == 'tanh':
      layers += [nn.Tanh()]
    elif activation == 'sigmoid':
      layers += [nn.Sigmoid()]
    else:
      raise NotImplementedError

    self.main = nn.Sequential(*layers) 
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:25,代碼來源:decoder.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:26,代碼來源:googlenet.py

示例3: _make_layers

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:vgg.py

示例4: _make_layer

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, 1, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            # here with dilation
            layers.append(block(self.inplanes, planes, dilation=dilation))

        return nn.Sequential(*layers) 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:19,代碼來源:model.py

示例5: _make_layer

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layer(self, block, planes, blocks, stride=1):
    downsample = None
    if stride != 1 or self.inplanes != planes * block.expansion:
      downsample = nn.Sequential(
        nn.Conv2d(self.inplanes, planes * block.expansion,
              kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(planes * block.expansion),
      )

    layers = []
    layers.append(block(self.inplanes, planes, stride, downsample))
    self.inplanes = planes * block.expansion
    for i in range(1, blocks):
      layers.append(block(self.inplanes, planes))

    return nn.Sequential(*layers) 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:18,代碼來源:resnet_v1.py

示例6: make_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def make_model(d_vocab, N, d_model, d_ff=1024, h=4, dropout=0.1):
    """Helper: Construct a model from hyperparameters."""
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
        nn.GRU(d_model, d_model, 1),
        nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
        Generator(d_model, d_vocab),
        d_model
    )
    # This was important from their code.
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    return model 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:23,代碼來源:model2.py

示例7: make_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def make_model(d_vocab, N, d_model, latent_size, d_ff=1024, h=4, dropout=0.1):
    """Helper: Construct a model from hyperparameters."""
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    share_embedding = Embeddings(d_model, d_vocab)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
        # nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
        # nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
        nn.Sequential(share_embedding, c(position)),
        nn.Sequential(share_embedding, c(position)),
        Generator(d_model, d_vocab),
        c(position),
        d_model,
        latent_size,
    )
    # This was important from their code.
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    return model 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:27,代碼來源:model.py

示例8: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout):
        super(MPNEncoder, self).__init__()
        self.hidden_size = hidden_size
        self.input_size = input_size
        self.depth = depth
        self.W_o = nn.Sequential( 
                nn.Linear(node_fdim + hidden_size, hidden_size), 
                nn.ReLU(),
                nn.Dropout(dropout)
        )

        if rnn_type == 'GRU':
            self.rnn = GRU(input_size, hidden_size, depth) 
        elif rnn_type == 'LSTM':
            self.rnn = LSTM(input_size, hidden_size, depth) 
        else:
            raise ValueError('unsupported rnn cell type ' + rnn_type) 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:19,代碼來源:encoder.py

示例9: build

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def build(cfg, registry, default_args=None):
    """Build a module.

    Args:
        cfg (dict, list[dict]): The config of modules, is is either a dict
            or a list of configs.
        registry (:obj:`Registry`): A registry the module belongs to.
        default_args (dict, optional): Default arguments to build the module.
            Defaults to None.

    Returns:
        nn.Module: A built nn module.
    """
    if isinstance(cfg, list):
        modules = [
            build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg
        ]
        return nn.Sequential(*modules)
    else:
        return build_from_cfg(cfg, registry, default_args) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:22,代碼來源:builder.py

示例10: init_weights

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def init_weights(self, pretrained=None):
        """Initialize the weights in detector.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        super(SingleStageDetector, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        self.bbox_head.init_weights() 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:single_stage.py

示例11: init_weights

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def init_weights(self, pretrained=None):
        """Initialize the weights in detector.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        super(TwoStageDetector, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
        if self.with_roi_head:
            self.roi_head.init_weights(pretrained) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:21,代碼來源:two_stage.py

示例12: _make_extra_layers

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_extra_layers(self, outplanes):
        layers = []
        kernel_sizes = (1, 3)
        num_layers = 0
        outplane = None
        for i in range(len(outplanes)):
            if self.inplanes == 'S':
                self.inplanes = outplane
                continue
            k = kernel_sizes[num_layers % 2]
            if outplanes[i] == 'S':
                outplane = outplanes[i + 1]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=2, padding=1)
            else:
                outplane = outplanes[i]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=1, padding=0)
            layers.append(conv)
            self.inplanes = outplanes[i]
            num_layers += 1
        if self.input_size == 512:
            layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))

        return nn.Sequential(*layers) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:ssd_vgg.py

示例13: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            ) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:18,代碼來源:resnext.py

示例14: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
        super(Bottleneck, self).__init__()
        self.out_planes = out_planes
        self.dense_depth = dense_depth

        self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
        self.bn2 = nn.BatchNorm2d(in_planes)
        self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)

        self.shortcut = nn.Sequential()
        if first_layer:
            self.shortcut = nn.Sequential(
                nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_planes+dense_depth)
            ) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:dpn.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, in_planes, out_planes, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride

        mid_planes = out_planes/4
        g = 1 if in_planes==24 else groups
        self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes)
        self.shuffle1 = ShuffleBlock(groups=g)
        self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_planes)
        self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 2:
            self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:shufflenet.py


注:本文中的torch.nn.Sequential方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。