本文整理匯總了Python中torch.nn.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.Sequential方法的具體用法?Python nn.Sequential怎麽用?Python nn.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn
的用法示例。
在下文中一共展示了nn.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'):
super(ImageDecoder, self).__init__()
ngf = ngf * (2 ** (n_layers - 2))
layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True)]
for i in range(1, n_layers - 1):
layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf // 2),
nn.ReLU(True)]
ngf = ngf // 2
layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)]
if activation == 'tanh':
layers += [nn.Tanh()]
elif activation == 'sigmoid':
layers += [nn.Sigmoid()]
else:
raise NotImplementedError
self.main = nn.Sequential(*layers)
示例2: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self):
super(GoogLeNet, self).__init__()
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
)
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, 10)
示例3: _make_layers
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size())
示例4: _make_layer
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, 1, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
# here with dilation
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
示例5: _make_layer
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:18,代碼來源:resnet_v1.py
示例6: make_model
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def make_model(d_vocab, N, d_model, d_ff=1024, h=4, dropout=0.1):
"""Helper: Construct a model from hyperparameters."""
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
nn.GRU(d_model, d_model, 1),
nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
Generator(d_model, d_vocab),
d_model
)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
示例7: make_model
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def make_model(d_vocab, N, d_model, latent_size, d_ff=1024, h=4, dropout=0.1):
"""Helper: Construct a model from hyperparameters."""
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
share_embedding = Embeddings(d_model, d_vocab)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
# nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
# nn.Sequential(Embeddings(d_model, d_vocab), c(position)),
nn.Sequential(share_embedding, c(position)),
nn.Sequential(share_embedding, c(position)),
Generator(d_model, d_vocab),
c(position),
d_model,
latent_size,
)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
示例8: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout):
super(MPNEncoder, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.depth = depth
self.W_o = nn.Sequential(
nn.Linear(node_fdim + hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout)
)
if rnn_type == 'GRU':
self.rnn = GRU(input_size, hidden_size, depth)
elif rnn_type == 'LSTM':
self.rnn = LSTM(input_size, hidden_size, depth)
else:
raise ValueError('unsupported rnn cell type ' + rnn_type)
示例9: build
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def build(cfg, registry, default_args=None):
"""Build a module.
Args:
cfg (dict, list[dict]): The config of modules, is is either a dict
or a list of configs.
registry (:obj:`Registry`): A registry the module belongs to.
default_args (dict, optional): Default arguments to build the module.
Defaults to None.
Returns:
nn.Module: A built nn module.
"""
if isinstance(cfg, list):
modules = [
build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg
]
return nn.Sequential(*modules)
else:
return build_from_cfg(cfg, registry, default_args)
示例10: init_weights
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def init_weights(self, pretrained=None):
"""Initialize the weights in detector.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
super(SingleStageDetector, self).init_weights(pretrained)
self.backbone.init_weights(pretrained=pretrained)
if self.with_neck:
if isinstance(self.neck, nn.Sequential):
for m in self.neck:
m.init_weights()
else:
self.neck.init_weights()
self.bbox_head.init_weights()
示例11: init_weights
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def init_weights(self, pretrained=None):
"""Initialize the weights in detector.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
super(TwoStageDetector, self).init_weights(pretrained)
self.backbone.init_weights(pretrained=pretrained)
if self.with_neck:
if isinstance(self.neck, nn.Sequential):
for m in self.neck:
m.init_weights()
else:
self.neck.init_weights()
if self.with_rpn:
self.rpn_head.init_weights()
if self.with_roi_head:
self.roi_head.init_weights(pretrained)
示例12: _make_extra_layers
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def _make_extra_layers(self, outplanes):
layers = []
kernel_sizes = (1, 3)
num_layers = 0
outplane = None
for i in range(len(outplanes)):
if self.inplanes == 'S':
self.inplanes = outplane
continue
k = kernel_sizes[num_layers % 2]
if outplanes[i] == 'S':
outplane = outplanes[i + 1]
conv = nn.Conv2d(
self.inplanes, outplane, k, stride=2, padding=1)
else:
outplane = outplanes[i]
conv = nn.Conv2d(
self.inplanes, outplane, k, stride=1, padding=0)
layers.append(conv)
self.inplanes = outplanes[i]
num_layers += 1
if self.input_size == 512:
layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))
return nn.Sequential(*layers)
示例13: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
super(Block, self).__init__()
group_width = cardinality * bottleneck_width
self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(group_width)
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm2d(group_width)
self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*group_width)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*group_width:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*group_width)
)
示例14: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
super(Bottleneck, self).__init__()
self.out_planes = out_planes
self.dense_depth = dense_depth
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
self.bn2 = nn.BatchNorm2d(in_planes)
self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)
self.shortcut = nn.Sequential()
if first_layer:
self.shortcut = nn.Sequential(
nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes+dense_depth)
)
示例15: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Sequential [as 別名]
def __init__(self, in_planes, out_planes, stride, groups):
super(Bottleneck, self).__init__()
self.stride = stride
mid_planes = out_planes/4
g = 1 if in_planes==24 else groups
self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.shuffle1 = ShuffleBlock(groups=g)
self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride == 2:
self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))