當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.ReflectionPad1d方法代碼示例

本文整理匯總了Python中torch.nn.ReflectionPad1d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.ReflectionPad1d方法的具體用法?Python nn.ReflectionPad1d怎麽用?Python nn.ReflectionPad1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.ReflectionPad1d方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReflectionPad1d [as 別名]
def __init__(self, channels, kernel_size=7):
        super(Decoder, self).__init__()

        model = []
        pad = (kernel_size - 1) // 2
        acti = nn.LeakyReLU(0.2)

        for i in range(len(channels) - 1):
            model.append(nn.Upsample(scale_factor=2, mode='nearest'))
            model.append(nn.ReflectionPad1d(pad))
            model.append(nn.Conv1d(channels[i], channels[i + 1],
                                            kernel_size=kernel_size, stride=1))
            if i == 0 or i == 1:
                model.append(nn.Dropout(p=0.2))
            if not i == len(channels) - 2:
                model.append(acti)          # whether to add tanh a last?
                #model.append(nn.Dropout(p=0.2))

        self.model = nn.Sequential(*model) 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:21,代碼來源:networks.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReflectionPad1d [as 別名]
def __init__(self, channel):
        super(ResStack, self).__init__()

        self.blocks = nn.ModuleList([
            nn.Sequential(
                nn.LeakyReLU(0.2),
                nn.ReflectionPad1d(3**i),
                nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=3, dilation=3**i)),
                nn.LeakyReLU(0.2),
                nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)),
            )
            for i in range(3)
        ])

        self.shortcuts = nn.ModuleList([
            nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1))
            for i in range(3)
        ]) 
開發者ID:seungwonpark,項目名稱:melgan,代碼行數:20,代碼來源:res_stack.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReflectionPad1d [as 別名]
def __init__(self):
        super(Discriminator, self).__init__()

        self.discriminator = nn.ModuleList([
            nn.Sequential(
                nn.ReflectionPad1d(7),
                nn.utils.weight_norm(nn.Conv1d(1, 16, kernel_size=15, stride=1)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.Sequential(
                nn.utils.weight_norm(nn.Conv1d(16, 64, kernel_size=41, stride=4, padding=20, groups=4)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.Sequential(
                nn.utils.weight_norm(nn.Conv1d(64, 256, kernel_size=41, stride=4, padding=20, groups=16)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.Sequential(
                nn.utils.weight_norm(nn.Conv1d(256, 1024, kernel_size=41, stride=4, padding=20, groups=64)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.Sequential(
                nn.utils.weight_norm(nn.Conv1d(1024, 1024, kernel_size=41, stride=4, padding=20, groups=256)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.Sequential(
                nn.utils.weight_norm(nn.Conv1d(1024, 1024, kernel_size=5, stride=1, padding=2)),
                nn.LeakyReLU(0.2, inplace=True),
            ),
            nn.utils.weight_norm(nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1)),
        ]) 
開發者ID:seungwonpark,項目名稱:melgan,代碼行數:33,代碼來源:discriminator.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReflectionPad1d [as 別名]
def __init__(self, mel_channel):
        super(Generator, self).__init__()
        self.mel_channel = mel_channel

        self.generator = nn.Sequential(
            nn.ReflectionPad1d(3),
            nn.utils.weight_norm(nn.Conv1d(mel_channel, 512, kernel_size=7, stride=1)),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(512, 256, kernel_size=16, stride=8, padding=4)),

            ResStack(256),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(256, 128, kernel_size=16, stride=8, padding=4)),

            ResStack(128),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(128, 64, kernel_size=4, stride=2, padding=1)),

            ResStack(64),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(64, 32, kernel_size=4, stride=2, padding=1)),

            ResStack(32),

            nn.LeakyReLU(0.2),
            nn.ReflectionPad1d(3),
            nn.utils.weight_norm(nn.Conv1d(32, 1, kernel_size=7, stride=1)),
            nn.Tanh(),
        ) 
開發者ID:seungwonpark,項目名稱:melgan,代碼行數:35,代碼來源:generator.py

示例5: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReflectionPad1d [as 別名]
def __init__(self, dim, dilation=1):
        super().__init__()
        self.block = nn.Sequential(
            nn.LeakyReLU(0.2),
            nn.ReflectionPad1d(dilation),
            WNConv1d(dim, dim, kernel_size=3, dilation=dilation),
            nn.LeakyReLU(0.2),
            WNConv1d(dim, dim, kernel_size=1),
        )
        self.shortcut = WNConv1d(dim, dim, kernel_size=1) 
開發者ID:descriptinc,項目名稱:melgan-neurips,代碼行數:12,代碼來源:modules.py


注:本文中的torch.nn.ReflectionPad1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。