當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.PoissonNLLLoss方法代碼示例

本文整理匯總了Python中torch.nn.PoissonNLLLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.PoissonNLLLoss方法的具體用法?Python nn.PoissonNLLLoss怎麽用?Python nn.PoissonNLLLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.PoissonNLLLoss方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: loglikelihood

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import PoissonNLLLoss [as 別名]
def loglikelihood(self, reduction):
        """
        Return the log-likelihood
        """
        if self._distr == 'poisson':
            if reduction == 'none':
                return self.poisson_cross_entropy
            return nn.PoissonNLLLoss(reduction=reduction)
        elif self._distr == 'bernoulli':
            return nn.BCELoss(reduction=reduction)
        else:
            raise ValueError('{} is not a valid distribution'.format(self._distr)) 
開發者ID:JGuymont,項目名稱:vae-anomaly-detector,代碼行數:14,代碼來源:vae.py

示例2: _get_loss

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import PoissonNLLLoss [as 別名]
def _get_loss(self, loss_spec):
        if not isinstance(self.loss_spec, str):
            return self.loss_spec
        elif loss_spec == 'mse':
            return nn.MSELoss(reduction='mean')
        elif loss_spec == 'sse':
            return nn.MSELoss(reduction='sum')
        elif loss_spec == 'crossentropy':
            # Cross entropy loss is used for multiclass categorization and needs inputs in shape
            # ((# minibatch_size, C), targets) where C is a 1-d vector of probabilities for each potential category
            # and where target is a 1d vector of type long specifying the index to the target category. This
            # formatting is different from most other loss functions available to autodiff compositions,
            # and therefore requires a wrapper function to properly package inputs.
            cross_entropy_loss = nn.CrossEntropyLoss()
            return lambda x, y: cross_entropy_loss(
                    x.unsqueeze(0),
                    y.type(torch.LongTensor)
            )
        elif loss_spec == 'l1':
            return nn.L1Loss(reduction='sum')
        elif loss_spec == 'nll':
            return nn.NLLLoss(reduction='sum')
        elif loss_spec == 'poissonnll':
            return nn.PoissonNLLLoss(reduction='sum')
        elif loss_spec == 'kldiv':
            return nn.KLDivLoss(reduction='sum')
        else:
            raise AutodiffCompositionError("Loss type {} not recognized. Loss argument must be a string or function. "
                                           "Currently, the recognized loss types are Mean Squared Error, Cross Entropy,"
                                           " L1 loss, Negative Log Likelihood loss, Poisson Negative Log Likelihood, "
                                           "and KL Divergence. These are specified as 'mse', 'crossentropy', 'l1', "
                                           "'nll', 'poissonnll', and 'kldiv' respectively.".format(loss_spec))

    # performs learning/training on all input-target pairs it recieves for given number of epochs 
開發者ID:PrincetonUniversity,項目名稱:PsyNeuLink,代碼行數:36,代碼來源:autodiffcomposition.py


注:本文中的torch.nn.PoissonNLLLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。