本文整理匯總了Python中torch.nn.MaxUnpool3d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.MaxUnpool3d方法的具體用法?Python nn.MaxUnpool3d怎麽用?Python nn.MaxUnpool3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn
的用法示例。
在下文中一共展示了nn.MaxUnpool3d方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxUnpool3d [as 別名]
def forward(self, x):
indices_list = []
pad_list = []
for layer in self.encoder:
if isinstance(layer, PadMaxPool3d):
x, indices, pad = layer(x)
indices_list.append(indices)
pad_list.append(pad)
elif isinstance(layer, nn.MaxPool3d):
x, indices = layer(x)
indices_list.append(indices)
else:
x = layer(x)
for layer in self.decoder:
if isinstance(layer, CropMaxUnpool3d):
x = layer(x, indices_list.pop(), pad_list.pop())
elif isinstance(layer, nn.MaxUnpool3d):
x = layer(x, indices_list.pop())
else:
x = layer(x)
return x
示例2: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxUnpool3d [as 別名]
def __init__(self, T=256, W=32, H=32, D=32, skip_connection=True):
super(SurfaceDecoder, self).__init__()
self.W = W
self.H = H
self.D = D
self.T = T
self.actvn = nn.ReLU()
self.Occ2Top = OccupancyToTopology()
# decoder
self.deconv4 = nn.Conv3d(128, 64, 3, padding=1)
self.deconv3_1 = nn.ConvTranspose3d(128, 128, 3, padding=1)
self.deconv3_2 = nn.ConvTranspose3d(128, 32, 3, padding=1)
self.deconv2_off_1 = nn.ConvTranspose3d(64, 64, 3, padding=1)
self.deconv2_off_2 = nn.ConvTranspose3d(64, 16, 3, padding=1)
self.deconv2_occ_1 = nn.ConvTranspose3d(64, 64, 3, padding=1)
self.deconv2_occ_2 = nn.ConvTranspose3d(64, 16, 3, padding=1)
self.deconv1_off_1 = nn.ConvTranspose3d(32, 32, 3, padding=1)
self.deconv1_off_2 = nn.ConvTranspose3d(32, 3, 3, padding=3)
self.deconv1_occ_1 = nn.ConvTranspose3d(32, 32, 3, padding=1)
self.deconv1_occ_2 = nn.ConvTranspose3d(32, 1, 3, padding=3)
# batchnorm
self.deconv4_bn = nn.BatchNorm3d(64)
self.deconv3_1_bn = nn.BatchNorm3d(128)
self.deconv3_2_bn = nn.BatchNorm3d(32)
self.deconv2_off_1_bn = nn.BatchNorm3d(64)
self.deconv2_off_2_bn = nn.BatchNorm3d(16)
self.deconv2_occ_1_bn = nn.BatchNorm3d(64)
self.deconv2_occ_2_bn = nn.BatchNorm3d(16)
self.deconv1_off_1_bn = nn.BatchNorm3d(32)
self.deconv1_occ_1_bn = nn.BatchNorm3d(32)
self.sigmoid = nn.Sigmoid()
self.maxunpool = nn.MaxUnpool3d(2)
self.skip_connection = skip_connection
示例3: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxUnpool3d [as 別名]
def __init__(self, kernel_size, stride):
super(CropMaxUnpool3d, self).__init__()
self.unpool = nn.MaxUnpool3d(kernel_size, stride)
示例4: construct_inv_layers
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxUnpool3d [as 別名]
def construct_inv_layers(self, model):
"""
Implements the decoder part from the CNN. The decoder part is the symmetrical list of the encoder
in which some layers are replaced by their transpose counterpart.
ConvTranspose and ReLU layers are inverted in the end.
:param model: (Module) a CNN. The convolutional part must be comprised in a 'features' class variable.
:return: (Module) decoder part of the Autoencoder
"""
inv_layers = []
for i, layer in enumerate(self.encoder):
if isinstance(layer, nn.Conv3d):
inv_layers.append(nn.ConvTranspose3d(layer.out_channels, layer.in_channels, layer.kernel_size,
stride=layer.stride, padding=layer.padding))
self.level += 1
elif isinstance(layer, PadMaxPool3d):
inv_layers.append(CropMaxUnpool3d(layer.kernel_size, stride=layer.stride))
elif isinstance(layer, nn.MaxPool3d):
inv_layers.append(nn.MaxUnpool3d(layer.kernel_size, stride=layer.stride))
elif isinstance(layer, nn.Linear):
inv_layers.append(nn.Linear(layer.out_features, layer.in_features))
elif isinstance(layer, Flatten):
inv_layers.append(Reshape(model.flattened_shape))
elif isinstance(layer, nn.LeakyReLU):
inv_layers.append(nn.LeakyReLU(negative_slope=1 / layer.negative_slope))
else:
inv_layers.append(deepcopy(layer))
inv_layers = self.replace_relu(inv_layers)
inv_layers.reverse()
return nn.Sequential(*inv_layers)
示例5: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxUnpool3d [as 別名]
def __init__(self):
super(Net, self).__init__()
# The first few layers consumes the most memory, so use simple convolution to save memory.
# Call these layers preBlock, i.e., before the residual blocks of later layers.
self.preBlock = nn.Sequential(
nn.Conv3d(1, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True),
nn.Conv3d(24, 24, kernel_size = 3, padding = 1),
nn.BatchNorm3d(24),
nn.ReLU(inplace = True))
# 3 poolings, each pooling downsamples the feature map by a factor 2.
# 3 groups of blocks. The first block of each group has one pooling.
num_blocks_forw = [2,2,3,3]
num_blocks_back = [3,3]
self.featureNum_forw = [24,32,64,64,64]
self.featureNum_back = [128,64,64]
for i in range(len(num_blocks_forw)):
blocks = []
for j in range(num_blocks_forw[i]):
if j == 0:
blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i+1]))
else:
blocks.append(PostRes(self.featureNum_forw[i+1], self.featureNum_forw[i+1]))
setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks))
for i in range(len(num_blocks_back)):
blocks = []
for j in range(num_blocks_back[i]):
if j == 0:
if i==0:
addition = 3
else:
addition = 0
blocks.append(PostRes(self.featureNum_back[i+1]+self.featureNum_forw[i+2]+addition, self.featureNum_back[i]))
else:
blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i]))
setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks))
self.maxpool1 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool2 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool3 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.maxpool4 = nn.MaxPool3d(kernel_size=2,stride=2,return_indices =True)
self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2,stride=2)
self.path1 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.path2 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size = 2, stride = 2),
nn.BatchNorm3d(64),
nn.ReLU(inplace = True))
self.drop = nn.Dropout3d(p = 0.5, inplace = False)
self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size = 1),
nn.ReLU(),
#nn.Dropout3d(p = 0.3),
nn.Conv3d(64, 5 * len(config['anchors']), kernel_size = 1))