當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.MaxPool2d方法代碼示例

本文整理匯總了Python中torch.nn.MaxPool2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.MaxPool2d方法的具體用法?Python nn.MaxPool2d怎麽用?Python nn.MaxPool2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.MaxPool2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:26,代碼來源:googlenet.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(MyResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # note the increasing dilation
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        # these layers will not be used
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:27,代碼來源:model.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:24,代碼來源:resnet_v1.py

示例4: test_max_pool_2d

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def test_max_pool_2d():
    test_cases = OrderedDict([('in_w', [10, 20]), ('in_h', [10, 20]),
                              ('in_channel', [1, 3]), ('out_channel', [1, 3]),
                              ('kernel_size', [3, 5]), ('stride', [1, 2]),
                              ('padding', [0, 1]), ('dilation', [1, 2])])

    for in_h, in_w, in_cha, out_cha, k, s, p, d in product(
            *list(test_cases.values())):
        # wrapper op with 0-dim input
        x_empty = torch.randn(0, in_cha, in_h, in_w, requires_grad=True)
        wrapper = MaxPool2d(k, stride=s, padding=p, dilation=d)
        wrapper_out = wrapper(x_empty)

        # torch op with 3-dim input as shape reference
        x_normal = torch.randn(3, in_cha, in_h, in_w)
        ref = nn.MaxPool2d(k, stride=s, padding=p, dilation=d)
        ref_out = ref(x_normal)

        assert wrapper_out.shape[0] == 0
        assert wrapper_out.shape[1:] == ref_out.shape[1:]

        assert torch.equal(wrapper(x_normal), ref_out) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:24,代碼來源:test_wrappers.py

示例5: _make_layers

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:vgg.py

示例6: simplify_source

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def simplify_source(s):
    s = map(lambda x: x.replace(',(1, 1),(0, 0),1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',1,1,bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',bias=True),#Conv2d',')'),s)
    s = map(lambda x: x.replace('),#Conv2d',')'),s)
    s = map(lambda x: x.replace(',1e-05,0.1,True),#BatchNorm2d',')'),s)
    s = map(lambda x: x.replace('),#BatchNorm2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace(',ceil_mode=False),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace('),#MaxPool2d',')'),s)
    s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#AvgPool2d',')'),s)
    s = map(lambda x: x.replace(',ceil_mode=False),#AvgPool2d',')'),s)
    s = map(lambda x: x.replace(',bias=True)),#Linear',')), # Linear'),s)
    s = map(lambda x: x.replace(')),#Linear',')), # Linear'),s)

    s = map(lambda x: '{},\n'.format(x),s)
    s = map(lambda x: x[1:],s)
    s = reduce(lambda x,y: x+y, s)
    return s 
開發者ID:kipoi,項目名稱:models,代碼行數:22,代碼來源:convert_Basset_to_pytorch.py

示例7: get_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def get_model(load_weights = True):
    deepsea_cpu = nn.Sequential( # Sequential,
        nn.Conv2d(4,320,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(320,480,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(480,960,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.Dropout(0.5),
        Lambda(lambda x: x.view(x.size(0),-1)), # Reshape,
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear,
        nn.Threshold(0, 1e-06),
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear,
        nn.Sigmoid(),
    )
    if load_weights:
        deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth'))
    return nn.Sequential(ReCodeAlphabet(), deepsea_cpu) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model_architecture.py

示例8: get_seqpred_model

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def get_seqpred_model(load_weights = True):
    deepsea_cpu = nn.Sequential( # Sequential,
        nn.Conv2d(4,320,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(320,480,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.MaxPool2d((1, 4),(1, 4)),
        nn.Dropout(0.2),
        nn.Conv2d(480,960,(1, 8),(1, 1)),
        nn.Threshold(0, 1e-06),
        nn.Dropout(0.5),
        Lambda(lambda x: x.view(x.size(0),-1)), # Reshape,
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear,
        nn.Threshold(0, 1e-06),
        nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear,
        nn.Sigmoid(),
    )
    if load_weights:
        deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth'))
    return nn.Sequential(ReCodeAlphabet(), ConcatenateRC(), deepsea_cpu, AverageRC()) 
開發者ID:kipoi,項目名稱:models,代碼行數:24,代碼來源:model_architecture.py

示例9: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self):
        super(LeNet, self).__init__()
        # 卷積層
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )
        # 全連接層
        self.fc = nn.Sequential(
            nn.Linear(16 * 4 * 4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        ) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:21,代碼來源:20_lenet.py

示例10: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, in_channels=3):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:toodef,項目名稱:neural-pipeline,代碼行數:22,代碼來源:albunet.py

示例11: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:kibok90,項目名稱:cvpr2018-hnd,代碼行數:24,代碼來源:cnns.py

示例12: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, min_depth, max_depth, num_classes,
                 classifierType, inferenceType, decoderType,
                 height, width,
                 alpha=0, beta=0,
                 layers=[3, 4, 6, 3], 
                 block=Bottleneck):
        # Note: classifierType: CE=Cross Entropy, OR=Ordinal Regression
        super(ResNet, self).__init__(min_depth, max_depth, num_classes, 
                                     classifierType, inferenceType, decoderType)
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7,stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu1 = nn.ReLU(True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        self.alpha = alpha
        self.beta = beta
        self.decoder = make_decoder(height, width, decoderType)
        self.use_inter = self.alpha != 0.0
        self.interout, self.classifier = make_classifier(classifierType, num_classes, self.use_inter, channel1=1024, channel2=2048)
        self.parameter_initialization() 
開發者ID:miraiaroha,項目名稱:ACAN,代碼行數:27,代碼來源:model.py

示例13: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, input_dim):
        super(VGGExtractor, self).__init__()
        self.init_dim = 64
        self.hide_dim = 128
        in_channel, freq_dim, out_dim = self.check_dim(input_dim)
        self.in_channel = in_channel
        self.freq_dim = freq_dim
        self.out_dim = out_dim

        self.extractor = nn.Sequential(
            nn.Conv2d(in_channel, self.init_dim, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(self.init_dim, self.init_dim, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=2),  # Half-time dimension
            nn.Conv2d(self.init_dim, self.hide_dim, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(self.hide_dim, self.hide_dim, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=2)  # Half-time dimension
        ) 
開發者ID:Alexander-H-Liu,項目名稱:End-to-end-ASR-Pytorch,代碼行數:23,代碼來源:module.py

示例14: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=2)   # different
    self.avgpool = nn.AvgPool2d(7)
    self.fc = nn.Linear(512 * block.expansion, num_classes)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:guoruoqian,項目名稱:cascade-rcnn_Pytorch,代碼行數:24,代碼來源:resnet.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import MaxPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(DetNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_new_layer(256, layers[3])
        self.layer5 = self._make_new_layer(256, layers[4])
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(1024, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:guoruoqian,項目名稱:cascade-rcnn_Pytorch,代碼行數:25,代碼來源:detnet_backbone.py


注:本文中的torch.nn.MaxPool2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。