本文整理匯總了Python中torch.nn.Conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.Conv2d方法的具體用法?Python nn.Conv2d怎麽用?Python nn.Conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn
的用法示例。
在下文中一共展示了nn.Conv2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.conv4 = nn.Conv2d(64, 128, 3, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.conv5 = nn.Conv2d(128, 128, 3, dilation=2, padding=2)
self.bn5 = nn.BatchNorm2d(128)
self.conv6 = nn.Conv2d(128, 128, 3, dilation=4, padding=4)
self.bn6 = nn.BatchNorm2d(128)
self.conv7 = nn.Conv2d(128, 1+9, 3, padding=1)
示例2: _make_layer
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, 1, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
# here with dilation
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
示例3: _init_modules
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def _init_modules(self):
self._init_head_tail()
# rpn
self.rpn_net = nn.Conv2d(self._net_conv_channels, cfg.RPN_CHANNELS, [3, 3], padding=1)
self.rpn_cls_score_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 2, [1, 1])
self.rpn_bbox_pred_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 4, [1, 1])
self.cls_score_net_fast = nn.Linear(self._fc7_channels, self._num_classes+1)
self.bbox_pred_net_fast = nn.Linear(self._fc7_channels, (self._num_classes+1) * 4)
self.cls_score_net = nn.Linear(self._fc7_channels, self._num_classes) # between class
self.bbox_pred_net = nn.Linear(self._fc7_channels, self._num_classes) # between boxes
self.init_weights()
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:20,代碼來源:network.py
示例4: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# maxpool different from pytorch-resnet, to match tf-faster-rcnn
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
# use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:24,代碼來源:resnet_v1.py
示例5: _make_layer
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:18,代碼來源:resnet_v1.py
示例6: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self, in_channels, out_channels, dilations=(1, 3, 6, 1)):
super().__init__()
assert dilations[-1] == 1
self.aspp = nn.ModuleList()
for dilation in dilations:
kernel_size = 3 if dilation > 1 else 1
padding = dilation if dilation > 1 else 0
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
padding=padding,
bias=True)
self.aspp.append(conv)
self.gap = nn.AdaptiveAvgPool2d(1)
self.init_weights()
示例7: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAlign, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
4, deformable_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例8: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAdaption, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
2, deformable_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
示例9: init_weights
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def init_weights(self, pretrained=None):
"""Initialize the weights in the module.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
示例10: init_weights
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
else:
raise TypeError('pretrained must be a str or None')
示例11: fuse_module
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def fuse_module(m):
last_conv = None
last_conv_name = None
for name, child in m.named_children():
if isinstance(child, (nn.BatchNorm2d, nn.SyncBatchNorm)):
if last_conv is None: # only fuse BN that is after Conv
continue
fused_conv = fuse_conv_bn(last_conv, child)
m._modules[last_conv_name] = fused_conv
# To reduce changes, set BN as Identity instead of deleting it.
m._modules[name] = nn.Identity()
last_conv = None
elif isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
else:
fuse_module(child)
return m
示例12: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self):
super(CW2_Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3)
self.bnm1 = nn.BatchNorm2d(32, momentum=0.1)
self.conv2 = nn.Conv2d(32, 64, 3)
self.bnm2 = nn.BatchNorm2d(64, momentum=0.1)
self.conv3 = nn.Conv2d(64, 128, 3)
self.bnm3 = nn.BatchNorm2d(128, momentum=0.1)
self.conv4 = nn.Conv2d(128, 128, 3)
self.bnm4 = nn.BatchNorm2d(128, momentum=0.1)
self.fc1 = nn.Linear(3200, 256)
#self.dropout1 = nn.Dropout(p=0.35, inplace=False)
self.bnm5 = nn.BatchNorm1d(256, momentum=0.1)
self.fc2 = nn.Linear(256, 256)
self.bnm6 = nn.BatchNorm1d(256, momentum=0.1)
self.fc3 = nn.Linear(256, 10)
#self.dropout2 = nn.Dropout(p=0.35, inplace=False)
#self.dropout3 = nn.Dropout(p=0.35, inplace=False)
示例13: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
super(Block, self).__init__()
group_width = cardinality * bottleneck_width
self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(group_width)
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm2d(group_width)
self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*group_width)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*group_width:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*group_width)
)
示例14: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
super(Bottleneck, self).__init__()
self.out_planes = out_planes
self.dense_depth = dense_depth
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
self.bn2 = nn.BatchNorm2d(in_planes)
self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)
self.shortcut = nn.Sequential()
if first_layer:
self.shortcut = nn.Sequential(
nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes+dense_depth)
)
示例15: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import Conv2d [as 別名]
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes)
)
# SE layers
self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear
self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)