當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.BCEWithLogitsLoss方法代碼示例

本文整理匯總了Python中torch.nn.BCEWithLogitsLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.BCEWithLogitsLoss方法的具體用法?Python nn.BCEWithLogitsLoss怎麽用?Python nn.BCEWithLogitsLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.BCEWithLogitsLoss方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: masked_binary_cross_entropy

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def masked_binary_cross_entropy(logits, target, length):
    '''
    logits: (batch, max_len, num_class)
    target: (batch, max_len, num_class)
    '''
    if USE_CUDA:
        length = Variable(torch.LongTensor(length)).cuda()
    else:
        length = Variable(torch.LongTensor(length))
    bce_criterion = nn.BCEWithLogitsLoss()
    loss = 0
    for bi in range(logits.size(0)):
        for i in range(logits.size(1)):
            if i < length[bi]:
                loss += bce_criterion(logits[bi][i], target[bi][i])
    loss = loss / length.float().sum()
    return loss 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:19,代碼來源:trade_utils.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
        """ Initialize the GANLoss class.

        Parameters:
            gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
            target_real_label (bool) - - label for a real image
            target_fake_label (bool) - - label of a fake image

        Note: Do not use sigmoid as the last layer of Discriminator.
        LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
        """
        super(GANLoss, self).__init__()
        self.register_buffer('real_label', torch.tensor(target_real_label))
        self.register_buffer('fake_label', torch.tensor(target_fake_label))
        self.gan_mode = gan_mode
        if gan_mode == 'lsgan':
            self.loss = nn.MSELoss()
        elif gan_mode == 'vanilla':
            self.loss = nn.BCEWithLogitsLoss()
        elif gan_mode in ['wgangp']:
            self.loss = None
        else:
            raise NotImplementedError('gan mode %s not implemented' % gan_mode) 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:25,代碼來源:networks.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):
        super(GANLoss, self).__init__()
        self.gan_type = gan_type.lower()
        self.real_label_val = real_label_val
        self.fake_label_val = fake_label_val

        if self.gan_type == 'gan' or self.gan_type == 'ragan':
            self.loss = nn.BCEWithLogitsLoss()
        elif self.gan_type == 'lsgan':
            self.loss = nn.MSELoss()
        elif self.gan_type == 'wgan-gp':
            def wgan_loss(input, target):
                # target is boolean
                return -1 * input.mean() if target else input.mean()

            self.loss = wgan_loss
        else:
            raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type)) 
開發者ID:cszn,項目名稱:KAIR,代碼行數:20,代碼來源:loss.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, discriminator, d_optimizer, size_average=True,
                 loss='L2', batch_acum=1, device='cpu'):
        super().__init__()
        self.discriminator = discriminator
        self.d_optimizer = d_optimizer
        self.batch_acum = batch_acum
        if loss == 'L2':
            self.loss = nn.MSELoss(size_average)
            self.labels = [1, -1, 0]
        elif loss == 'BCE':
            self.loss = nn.BCEWithLogitsLoss()
            self.labels = [1, 0, 1]
        elif loss == 'Hinge':
            self.loss = None
        else:
            raise ValueError('Urecognized loss: {}'.format(loss))
        self.device = device 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:19,代碼來源:losses.py

示例5: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def forward(self, obs_variable, actions_variable, target):
        """
        Compute the cross entropy loss using the logit, this is more numerical
        stable than first apply sigmoid function and then use BCELoss.

        As in discriminator, we only want to discriminate the expert from
        learner, thus this is a binary classification problem.

        Parameters
        ----------
        obs_variable (Variable): state wrapped in Variable
        actions_variable (Variable): action wrapped in Variable
        target (Variable): 1 or 0, mark the real and fake of the
            samples

        Returns
        -------
        loss (Variable):
        """
        logits = self.get_logits(obs_variable, actions_variable)
        loss_fn = nn.BCEWithLogitsLoss()
        loss = loss_fn(logits, target)

        return loss 
開發者ID:nosyndicate,項目名稱:pytorchrl,代碼行數:26,代碼來源:discriminator.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):
        super(GANLoss, self).__init__()
        self.gan_type = gan_type.lower()
        self.real_label_val = real_label_val
        self.fake_label_val = fake_label_val

        if self.gan_type == 'gan' or self.gan_type == 'ragan':
            self.loss = nn.BCEWithLogitsLoss()
        elif self.gan_type == 'lsgan':
            self.loss = nn.MSELoss()
        elif self.gan_type == 'wgan-gp':

            def wgan_loss(input, target):
                # target is boolean
                return -1 * input.mean() if target else input.mean()

            self.loss = wgan_loss
        else:
            raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type)) 
開發者ID:xinntao,項目名稱:BasicSR,代碼行數:21,代碼來源:loss.py

示例7: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, opt):
        super(DiscriminatorLoss, self).__init__()

        self.gpu_id = opt.gpu_ids[0]

        # Adversarial criteria for the predictions
        if opt.dis_adv_loss_type == 'gan':
            self.crit = nn.BCEWithLogitsLoss()
        elif opt.dis_adv_loss_type == 'lsgan':
            self.crit = nn.MSELoss()

        # Targets for criteria
        self.labels_real = []
        self.labels_fake = []

        # Iterate over discriminators to inialize labels
        for size in opt.dis_output_sizes:

            shape = (opt.batch_size, 1, size, size)
            
            self.labels_real += [Variable(torch.ones(shape).cuda(self.gpu_id))]
            self.labels_fake += [Variable(torch.zeros(shape).cuda(self.gpu_id))] 
開發者ID:egorzakharov,項目名稱:PerceptualGAN,代碼行數:24,代碼來源:discriminator_loss.py

示例8: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, params):
        configure_logger(params['output_dir'])
        log('Parameters {}'.format(params))
        self.params = params
        self.binding = load_bindings(params['rom_file_path'])
        self.max_word_length = self.binding['max_word_length']
        self.sp = spm.SentencePieceProcessor()
        self.sp.Load(params['spm_file'])
        kg_env = KGA2CEnv(params['rom_file_path'], params['seed'], self.sp,
                          params['tsv_file'], step_limit=params['reset_steps'],
                          stuck_steps=params['stuck_steps'], gat=params['gat'])
        self.vec_env = VecEnv(params['batch_size'], kg_env, params['openie_path'])
        self.template_generator = TemplateActionGenerator(self.binding)
        env = FrotzEnv(params['rom_file_path'])
        self.vocab_act, self.vocab_act_rev = load_vocab(env)
        self.model = KGA2C(params, self.template_generator.templates, self.max_word_length,
                           self.vocab_act, self.vocab_act_rev, len(self.sp), gat=self.params['gat']).cuda()
        self.batch_size = params['batch_size']
        if params['preload_weights']:
            self.model = torch.load(self.params['preload_weights'])['model']
        self.optimizer = optim.Adam(self.model.parameters(), lr=params['lr'])

        self.loss_fn1 = nn.BCELoss()
        self.loss_fn2 = nn.BCEWithLogitsLoss()
        self.loss_fn3 = nn.MSELoss() 
開發者ID:rajammanabrolu,項目名稱:KG-A2C,代碼行數:27,代碼來源:gdqn.py

示例9: get_gan_criterion

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def get_gan_criterion(mode):
    if mode == 'dcgan':
        criterion = GANLoss(dis_loss=nn.BCEWithLogitsLoss(),gen_loss=nn.BCEWithLogitsLoss())
    elif mode == 'lsgan':
        criterion = GANLoss(dis_loss=nn.MSELoss(),gen_loss=nn.MSELoss())
    elif mode == 'hinge':
        def hinge_dis(pre, margin):
            '''margin should not be 0'''
            logict = (margin>0).float() +  (-1. * (margin<0).float())
            return torch.mean(F.relu((margin-pre)*logict))
        def hinge_gen(pre, margin):
            return -torch.mean(pre)
        criterion = GANLoss(real_label=1,fake_label=-1,dis_loss=hinge_dis,gen_loss=hinge_gen)
    else:
        raise NotImplementedError('{} is not implementation'.format(mode))
    return criterion 
開發者ID:Xiaoming-Yu,項目名稱:DMIT,代碼行數:18,代碼來源:loss.py

示例10: compute_generator_loss

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def compute_generator_loss(netD, fake_imgs, real_labels, local_label, transf_matrices, transf_matrices_inv, gpus):
    criterion = nn.BCEWithLogitsLoss()
    local_label_cond = local_label[:, 0, :] + local_label[:, 1, :] + local_label[:, 2, :] + local_label[:, 3, :]
    local_label_cond[local_label_cond < 0] = 0
    fake_features = nn.parallel.data_parallel(netD, (fake_imgs, local_label, transf_matrices, transf_matrices_inv), gpus)
    # fake pairs
    inputs = (fake_features, local_label_cond)
    fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
    errD_fake = criterion(fake_logits, real_labels)
    if netD.get_uncond_logits is not None:
        fake_logits = nn.parallel.data_parallel(netD.get_uncond_logits, (fake_features), gpus)
        uncond_errD_fake = criterion(fake_logits, real_labels)
        errD_fake += uncond_errD_fake
    return errD_fake


############################# 
開發者ID:tohinz,項目名稱:multiple-objects-gan,代碼行數:19,代碼來源:utils.py

示例11: compute_generator_loss

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def compute_generator_loss(netD, fake_imgs, real_labels, local_label, transf_matrices, transf_matrices_inv, gpus):
    criterion = nn.BCEWithLogitsLoss()
    local_label = local_label.detach()
    local_label_cond = local_label[:, 0, :] + local_label[:, 1, :] + local_label[:, 2, :]
    fake_features = nn.parallel.data_parallel(netD, (fake_imgs, local_label, transf_matrices, transf_matrices_inv), gpus)
    # fake pairs
    inputs = (fake_features, local_label_cond)
    fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
    errD_fake = criterion(fake_logits, real_labels)
    if netD.get_uncond_logits is not None:
        fake_logits = nn.parallel.data_parallel(netD.get_uncond_logits, (fake_features), gpus)
        # fake_logits = torch.clamp(fake_logits, 1e-8, 1-1e-8)
        uncond_errD_fake = criterion(fake_logits, real_labels)
        errD_fake += uncond_errD_fake
    return errD_fake


############################# 
開發者ID:tohinz,項目名稱:multiple-objects-gan,代碼行數:20,代碼來源:utils.py

示例12: init_loss

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def init_loss(criterion_name):

    if criterion_name=='bce':
        loss = nn.BCEWithLogitsLoss()
    elif criterion_name=='cce':
        loss = nn.CrossEntropyLoss()
    elif criterion_name.startswith('arc_margin'):
        loss = nn.CrossEntropyLoss()
    elif 'cce' in criterion_name:
        loss = nn.CrossEntropyLoss()
    elif criterion_name == 'focal_loss':
        loss = FocalLoss()
    else:
        raise Exception('This loss function is not implemented yet.') 

    return loss 
開發者ID:AlexanderParkin,項目名稱:ChaLearn_liveness_challenge,代碼行數:18,代碼來源:init_model.py

示例13: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def forward(self, output, target):
        background = target == 0
        foreground = target == 1
        loss = nn.BCEWithLogitsLoss(size_average=self.size_average)
        background_loss = loss(output[background], target[background])
        foreground_loss = loss(output[foreground], target[foreground])
        return background_loss + foreground_loss 
開發者ID:ehsanik,項目名稱:dogTorch,代碼行數:9,代碼來源:weighted_binary_cross_entropy.py

示例14: segmentation_loss

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def segmentation_loss(output, target, weight_bce=1.0, weight_dice=1.0):
    bce = nn.BCEWithLogitsLoss()
    dice = DiceLoss()
    return weight_bce*bce(output, target) + weight_dice*dice(output, target) 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:6,代碼來源:validation.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BCEWithLogitsLoss [as 別名]
def __init__(self, q=0.5,
                 noisy_weight=0.5,
                 curated_weight=0.5):
        super().__init__()
        lq = LqLoss(q=q)
        bce = nn.BCEWithLogitsLoss()
        self.loss = NoisyCuratedLoss(lq, bce,
                                     noisy_weight,
                                     curated_weight) 
開發者ID:lRomul,項目名稱:argus-freesound,代碼行數:11,代碼來源:losses.py


注:本文中的torch.nn.BCEWithLogitsLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。