當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.AvgPool3d方法代碼示例

本文整理匯總了Python中torch.nn.AvgPool3d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.AvgPool3d方法的具體用法?Python nn.AvgPool3d怎麽用?Python nn.AvgPool3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.AvgPool3d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inflate_pool

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def inflate_pool(pool2d,
                 time_dim=1,
                 time_padding=0,
                 time_stride=None,
                 time_dilation=1):
    kernel_dim = (time_dim, pool2d.kernel_size, pool2d.kernel_size)
    padding = (time_padding, pool2d.padding, pool2d.padding)
    if time_stride is None:
        time_stride = time_dim
    stride = (time_stride, pool2d.stride, pool2d.stride)
    if isinstance(pool2d, nn.MaxPool2d):
        dilation = (time_dilation, pool2d.dilation, pool2d.dilation)
        pool3d = nn.MaxPool3d(
            kernel_dim,
            padding=padding,
            dilation=dilation,
            stride=stride,
            ceil_mode=pool2d.ceil_mode)
    elif isinstance(pool2d, nn.AvgPool2d):
        pool3d = nn.AvgPool3d(kernel_dim, stride=stride)
    else:
        raise ValueError(
            '{} is not among known pooling classes'.format(type(pool2d)))
    return pool3d 
開發者ID:guxinqian,項目名稱:TKP,代碼行數:26,代碼來源:inflate.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_class):
        super(S3D_G, self).__init__()

        self.conv1=BasicConv3d(3,64,kernel_size=7,stride=2,padding=3)
        self.pool1=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.conv2=BasicConv3d(64,64,kernel_size=1,stride=1)
        self.conv3=BasicConv3d(64,192,kernel_size=3,stride=1,padding=1)
        self.pool2=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.Inception1=nn.Sequential(S3D_G_block(192, [64,96,128,16,32,32]),
                                      S3D_G_block(256, [128, 128, 192, 32, 96, 64]))
        self.pool3=nn.MaxPool3d(kernel_size=(3,3,3),stride=(2,2,2),padding=(1,1,1))
        self.Inception2=nn.Sequential(S3D_G_block(480,[192,96,208,16,48,64]),
                                      S3D_G_block(512, [160, 112, 224, 24, 64, 64]),
                                      S3D_G_block(512, [128, 128, 256, 24, 64, 64]),
                                      S3D_G_block(512, [112, 144, 288, 32, 64, 64]),
                                      S3D_G_block(528, [256, 160, 320, 32, 128, 128]))
        self.pool4=nn.MaxPool3d(kernel_size=(2,2,2),stride=2)
        self.Inception3=nn.Sequential(S3D_G_block(832,[256,160,320,32,128,128]),
                                      S3D_G_block(832, [384, 192, 384, 48, 128, 128]))
        self.avg_pool=nn.AvgPool3d(kernel_size=(8,7,7))
        self.dropout = nn.Dropout(0.4)
        self.linear=nn.Linear(1024,num_class) 
開發者ID:MRzzm,項目名稱:action-recognition-models-pytorch,代碼行數:24,代碼來源:S3D_G.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_class):
        super(fast_S3D, self).__init__()

        self.conv1=BasicConv3d(3,64,kernel_size=(1,7,7),stride=2,padding=(0,3,3))
        self.pool1=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.conv2=BasicConv3d(64,64,kernel_size=1,stride=1)
        self.conv3=BasicConv3d(64,192,kernel_size=(1,3,3),stride=1,padding=(0,1,1))
        self.pool2=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.Inception1=nn.Sequential(Inception_block(192, [64,96,128,16,32,32]),
                                      Inception_block(256, [128, 128, 192, 32, 96, 64]))
        self.pool3=nn.MaxPool3d(kernel_size=3,stride=2,padding=1)
        self.Inception2=nn.Sequential(Inception_block(480,[192,96,208,16,48,64]),
                                      Inception_block(512, [160, 112, 224, 24, 64, 64]),
                                      Inception_block(512, [128, 128, 256, 24, 64, 64]),
                                      Inception_block(512, [112, 144, 288, 32, 64, 64]),
                                      Inception_block(528, [256, 160, 320, 32, 128, 128]))
        self.pool4=nn.MaxPool3d(kernel_size=2,stride=2)
        self.Inception3=nn.Sequential(S3D_block(832,[256,160,320,32,128,128]),
                                      S3D_block(832, [384, 192, 384, 48, 128, 128]))
        self.avg_pool=nn.AvgPool3d(kernel_size=(8,7,7))
        self.dropout = nn.Dropout(0.4)
        self.linear=nn.Linear(1024,num_class) 
開發者ID:MRzzm,項目名稱:action-recognition-models-pytorch,代碼行數:24,代碼來源:Fast_S3D.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_class):
        super(Res21D, self).__init__()

        self.conv1=nn.Conv3d(3,64,kernel_size=(3,7,7),stride=(1,2,2),padding=(1,3,3))
        self.conv2=nn.Sequential(Res21D_Block(64, 64, spatial_stride=2),
                                 Res21D_Block(64, 64),
                                 Res21D_Block(64, 64))
        self.conv3=nn.Sequential(Res21D_Block(64,128,spatial_stride=2,temporal_stride=2),
                                 Res21D_Block(128, 128),
                                 Res21D_Block(128, 128),
                                 Res21D_Block(128, 128),)
        self.conv4 = nn.Sequential(Res21D_Block(128, 256, spatial_stride=2,temporal_stride=2),
                                   Res21D_Block(256, 256),
                                   Res21D_Block(256, 256),
                                   Res21D_Block(256, 256),
                                   Res21D_Block(256, 256),
                                   Res21D_Block(256, 256))
        self.conv5 = nn.Sequential(Res21D_Block(256, 512, spatial_stride=2,temporal_stride=2),
                                   Res21D_Block(512, 512),
                                   Res21D_Block(512, 512))
        self.avg_pool=nn.AvgPool3d(kernel_size=(1,4,4))
        self.linear=nn.Linear(512,num_class) 
開發者ID:MRzzm,項目名稱:action-recognition-models-pytorch,代碼行數:24,代碼來源:R21D_34.py

示例5: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_class):
        super(I3D, self).__init__()

        self.conv1=BasicConv3d(3,64,kernel_size=7,stride=2,padding=3)
        self.pool1=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.conv2=BasicConv3d(64,64,kernel_size=1,stride=1)
        self.conv3=BasicConv3d(64,192,kernel_size=3,stride=1,padding=1)
        self.pool2=nn.MaxPool3d(kernel_size=(1,3,3),stride=(1,2,2),padding=(0,1,1))
        self.Inception1=nn.Sequential(Inception_block(192, [64,96,128,16,32,32]),
                                      Inception_block(256, [128, 128, 192, 32, 96, 64]))
        self.pool3=nn.MaxPool3d(kernel_size=(3,3,3),stride=(2,2,2),padding=(1,1,1))
        self.Inception2=nn.Sequential(Inception_block(480,[192,96,208,16,48,64]),
                                      Inception_block(512, [160, 112, 224, 24, 64, 64]),
                                      Inception_block(512, [128, 128, 256, 24, 64, 64]),
                                      Inception_block(512, [112, 144, 288, 32, 64, 64]),
                                      Inception_block(528, [256, 160, 320, 32, 128, 128]))
        self.pool4=nn.MaxPool3d(kernel_size=(2,2,2),stride=2)
        self.Inception3=nn.Sequential(Inception_block(832,[256,160,320,32,128,128]),
                                      Inception_block(832, [384, 192, 384, 48, 128, 128]))
        self.avg_pool=nn.AvgPool3d(kernel_size=(8,7,7))
        self.dropout = nn.Dropout(0.4)
        self.linear=nn.Linear(1024,num_class) 
開發者ID:MRzzm,項目名稱:action-recognition-models-pytorch,代碼行數:24,代碼來源:I3D.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_classes=400, dropout_keep_prob = 1, input_channel = 3, spatial_squeeze=True):
        super(S3DG, self).__init__()
        self.features = nn.Sequential(
            STConv3d(input_channel, 64, kernel_size=7, stride=2, padding=3), # (64, 32, 112, 112)
            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),  # (64, 32, 56, 56)
            BasicConv3d(64, 64, kernel_size=1, stride=1), # (64, 32, 56, 56)
            STConv3d(64, 192, kernel_size=3, stride=1, padding=1),  # (192, 32, 56, 56)
            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),  # (192, 32, 28, 28)
            Mixed_3b(), # (256, 32, 28, 28)
            Mixed_3c(), # (480, 32, 28, 28)
            nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)), # (480, 16, 14, 14)
            Mixed_4b(),# (512, 16, 14, 14)
            Mixed_4c(),# (512, 16, 14, 14)
            Mixed_4d(),# (512, 16, 14, 14)
            Mixed_4e(),# (528, 16, 14, 14)
            Mixed_4f(),# (832, 16, 14, 14)
            nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)), # (832, 8, 7, 7)
            Mixed_5b(), # (832, 8, 7, 7)
            Mixed_5c(), # (1024, 8, 7, 7)
            nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1),# (1024, 8, 1, 1)
            nn.Dropout3d(dropout_keep_prob),
            nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True),# (400, 8, 1, 1)
        )
        self.spatial_squeeze = spatial_squeeze
        self.softmax = nn.Softmax() 
開發者ID:qijiezhao,項目名稱:s3d.pytorch,代碼行數:27,代碼來源:S3DG_Pytorch.py

示例7: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, in_planes, out_planes, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride
        self.groups = groups
        mid_planes = out_planes//4
        if self.stride == 2:
            out_planes = out_planes - in_planes
        g = 1 if in_planes==24 else groups
        self.conv1    = nn.Conv3d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
        self.bn1      = nn.BatchNorm3d(mid_planes)
        self.conv2    = nn.Conv3d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
        self.bn2      = nn.BatchNorm3d(mid_planes)
        self.conv3    = nn.Conv3d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
        self.bn3      = nn.BatchNorm3d(out_planes)
        self.relu     = nn.ReLU(inplace=True)

        if stride == 2:
            self.shortcut = nn.AvgPool3d(kernel_size=(2,3,3), stride=2, padding=(0,1,1)) 
開發者ID:ahmetgunduz,項目名稱:Real-time-GesRec,代碼行數:20,代碼來源:shufflenet.py

示例8: build_pooling3d

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def build_pooling3d(attr, channels=None, conv_bias=False):
    method = attr['mode']
    ks = attr['kernel_size'] if 'kernel_size' in attr else (attr['kernel_d'], attr['kernel_h'], attr['kernel_w'])
    if ('pad' in attr) or ('pad_d' in attr and 'pad_w' in attr and 'pad_h' in attr):
        padding = attr['pad'] if 'pad' in attr else (attr['pad_d'], attr['pad_h'], attr['pad_w'])
    else:
        padding = 0
    if ('stride' in attr) or ('stride_d' in attr and 'stride_w' in attr and 'stride_h' in attr):
        stride = attr['stride'] if 'stride' in attr else (attr['stride_d'], attr['stride_h'], attr['stride_w'])
    else:
        stride = 1
    if method == 'max':
        pool = nn.MaxPool3d(ks, stride, padding,
                            ceil_mode=True) # all Caffe pooling use ceil model
    elif method == 'ave':
        pool = nn.AvgPool3d(ks, stride, padding,
                            ceil_mode=True)  # all Caffe pooling use ceil model
    else:
        raise ValueError("Unknown pooling method: {}".format(method))

    return pool, channels 
開發者ID:zhang-can,項目名稱:ECO-pytorch,代碼行數:23,代碼來源:layer_factory.py

示例9: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, block, layers, sample_size, sample_duration, shortcut_type='B', num_classes=400):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2),
                               padding=(3, 3, 3), bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
        self.layer2 = self._make_layer(block, 128, layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], shortcut_type, stride=2)
        last_duration = math.ceil(sample_duration / 16)
        last_size = math.ceil(sample_size / 32)
        self.avgpool = nn.AvgPool3d((last_duration, last_size, last_size), stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
                m.eval() 
開發者ID:Tangshitao,項目名稱:ClipShots_basline,代碼行數:27,代碼來源:resnet.py

示例10: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, n_channels=1, nlabels=1, init_filters=32):
        nf = init_filters
        super(FCNBN, self).__init__()
        self.encoder = nn.Sequential(
            conv3d_bn_block(n_channels, nf),
            nn.MaxPool3d(2),
            conv3d_bn_block(nf, 2*nf),
            nn.MaxPool3d(2),
            conv3d_bn_block(2*nf, 4*nf),
            conv3d_bn_block(4*nf, 4*nf),
            nn.MaxPool3d(2),
            conv3d_bn_block(4*nf, 8*nf),
            conv3d_bn_block(8*nf, 8*nf),
            nn.MaxPool3d(2),
            conv3d_bn_block(8*nf, 8*nf),
            conv3d_bn_block(8*nf, 8*nf),
            conv3d_bn_block(8*nf, 8*nf),
        )
        self.classifier = nn.Sequential(
            conv3d_bn_block(8*nf, nlabels, kernel=1, activation=Identity),
            nn.AvgPool3d(2),
        ) 
開發者ID:orobix,項目名稱:Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch,代碼行數:24,代碼來源:classifiers_3D.py

示例11: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def forward(self, x):
        out = self.bn3d_list[0](self.conv3d_list[0](x))
        #concatenate multiple atrous rates
        for i in range(len(self.conv3d_list)-1):
            #XXX add batch norm?
            out = torch.cat([out, self.bn3d_list[i+1](self.conv3d_list[i+1](x))], 1)

        #concatenate global avg pooling (avg global pool -> 1x1 conv (256 filter) -> batchnorm -> interpolate -> concat)
        self.glob_avg_pool = nn.AvgPool3d(kernel_size=(x.size()[2],x.size()[3],x.size()[4]))
        self.iterp_orig = nn.Upsample(size = (out.size()[2], out.size()[3], out.size()[4]), mode= 'trilinear')

        out = torch.cat([out, self.iterp_orig(self.bn1(self.conv1x1_1(self.glob_avg_pool(x))))], 1)
        
        #concatenate 1x1 convolution
        out = torch.cat([out, self.conv1x1_2(x)], 1)

        #apply batch norm on concatenated output
        out = self.bn2(out)
        out = self.relu(out)

        #apply 1x1 convolution to get back to output number filters
        out =  self.conv1x1_3(out)
        #apply last batch norm
        out  = self.bn3(out)
        out = self.relu(out)
        return out

#replaced transpose convolutions with trilinear interpolation 
開發者ID:Achilleas,項目名稱:pytorch-mri-segmentation-3D,代碼行數:30,代碼來源:exp_net_3D.py

示例12: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def forward(self, x):
        out = self.bn3d_list[0](self.conv3d_list[0](x))
        #concatenate multiple atrous rates
        for i in range(len(self.conv3d_list)-1):
            #XXX add batch norm?
            out = torch.cat([out, self.bn3d_list[i+1](self.conv3d_list[i+1](x))], 1)

        #concatenate global avg pooling (avg global pool -> 1x1 conv (256 filter) -> batchnorm -> interpolate -> concat)
        self.glob_avg_pool = nn.AvgPool3d(kernel_size=(x.size()[2],x.size()[3],x.size()[4]))
        self.iterp_orig = nn.Upsample(size = (out.size()[2], out.size()[3], out.size()[4]), mode= 'trilinear')

        out = torch.cat([out, self.iterp_orig(self.bn1(self.conv1x1_1(self.glob_avg_pool(x))))], 1)
        
        #concatenate 1x1 convolution
        out = torch.cat([out, self.conv1x1_2(x)], 1)

        #apply batch norm on concatenated output
        out = self.bn2(out)
        
        #apply 1x1 convolution to get back to 256 filters
        out =  self.conv1x1_3(out)

        #apply last batch norm
        out  = self.bn3(out)

        #apply 1x1 convolution to get last labels
        out =  self.conv1x1_4(out)
        return out 
開發者ID:Achilleas,項目名稱:pytorch-mri-segmentation-3D,代碼行數:30,代碼來源:deeplab_resnet_3D.py

示例13: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self,
                 block,
                 layers,
                 spatial_size,
                 sample_duration,
                 shortcut_type='B',
                 cardinality=32,
                 num_classes=400):
        self.inplanes = 64
        super(ResNeXt, self).__init__()
        self.conv1 = nn.Conv3d(
            3,
            64,
            kernel_size=7,
            stride=(1, 2, 2),
            padding=(3, 3, 3),
            bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type,
                                       cardinality)
        self.layer2 = self._make_layer(
            block, 256, layers[1], shortcut_type, cardinality, stride=2)
        self.layer3 = self._make_layer(
            block, 512, layers[2], shortcut_type, cardinality, stride=2)
        self.layer4 = self._make_layer(
            block, 1024, layers[3], shortcut_type, cardinality, stride=2)
        last_duration = int(math.ceil(sample_duration / 16))
        last_size = int(math.ceil(spatial_size / 32))
        self.avgpool = nn.AvgPool3d(
            (last_duration, last_size, last_size), stride=1)
        self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:tomrunia,項目名稱:PyTorchConv3D,代碼行數:42,代碼來源:resnext.py

示例14: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self,
                 block,
                 layers,
                 spatial_size,
                 sample_duration,
                 shortcut_type='B',
                 num_classes=400):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv3d(
            3,
            64,
            kernel_size=7,
            stride=(1, 2, 2),
            padding=(3, 3, 3),
            bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
        self.layer2 = self._make_layer(
            block, 128, layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(
            block, 256, layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(
            block, 512, layers[3], shortcut_type, stride=2)
        last_duration = int(math.ceil(sample_duration / 16))
        last_size = int(math.ceil(spatial_size / 32))
        self.avgpool = nn.AvgPool3d(
            (last_duration, last_size, last_size), stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:tomrunia,項目名稱:PyTorchConv3D,代碼行數:40,代碼來源:resnet.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool3d [as 別名]
def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm3d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv',
                        nn.Conv3d(
                            num_input_features,
                            num_output_features,
                            kernel_size=1,
                            stride=1,
                            bias=False))
        self.add_module('pool', nn.AvgPool3d(kernel_size=2, stride=2)) 
開發者ID:tomrunia,項目名稱:PyTorchConv3D,代碼行數:14,代碼來源:densenet.py


注:本文中的torch.nn.AvgPool3d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。