當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.AvgPool1d方法代碼示例

本文整理匯總了Python中torch.nn.AvgPool1d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.AvgPool1d方法的具體用法?Python nn.AvgPool1d怎麽用?Python nn.AvgPool1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.AvgPool1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, norm_layer, nf0, conv_res, nclasses, input_res, pool_res, fc_n,
                 nresblocks=3):
        super(MeshConvNet, self).__init__()
        self.k = [nf0] + conv_res
        self.res = [input_res] + pool_res
        norm_args = get_norm_args(norm_layer, self.k[1:])

        for i, ki in enumerate(self.k[:-1]):
            setattr(self, 'conv{}'.format(i), MResConv(ki, self.k[i + 1], nresblocks))
            setattr(self, 'norm{}'.format(i), norm_layer(**norm_args[i]))
            setattr(self, 'pool{}'.format(i), MeshPool(self.res[i + 1]))


        self.gp = torch.nn.AvgPool1d(self.res[-1])
        # self.gp = torch.nn.MaxPool1d(self.res[-1])
        self.fc1 = nn.Linear(self.k[-1], fc_n)
        self.fc2 = nn.Linear(fc_n, nclasses) 
開發者ID:ranahanocka,項目名稱:MeshCNN,代碼行數:19,代碼來源:networks.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, ninp, fmaps, din=0, dout=0, context=1, 
                 tie_context_weights=False, name='MLPBlock',
                 ratio_fixed=None, range_fixed=None, 
                 dropin_mode='std', drop_channels=False, emb_size=100):
        super().__init__(name=name)
        self.ninp = ninp
        self.fmaps = fmaps
        self.tie_context_weights = tie_context_weights
        assert context % 2 != 0, context
        if tie_context_weights:
            self.W = nn.Conv1d(ninp, fmaps, 1)
            self.pool = nn.AvgPool1d(kernel_size=context, stride=1,
                                      padding=context//2, count_include_pad=False)
        else:
            self.W = nn.Conv1d(ninp, fmaps, context, padding=context//2)

        self.din = PatternedDropout(emb_size=emb_size, p=din, 
                                    dropout_mode=dropin_mode,
                                    range_fixed=range_fixed,
                                    ratio_fixed=ratio_fixed,
                                    drop_whole_channels=drop_channels)
        self.act = nn.PReLU(fmaps)
        self.dout = nn.Dropout(dout) 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:25,代碼來源:modules.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, no_vocabs, embedding_dim=16, window_size=1):
        super(Model, self).__init__()

        self.input_size = 2*window_size+1
        
        self.embeddings = nn.ModuleList([
            nn.Embedding(
                no_vocabs,
                embedding_dim,
                padding_idx=0
            ) for i in range(self.input_size)
        ])

        self.pooling = nn.AvgPool1d(embedding_dim)

        self.linear1 = nn.Linear(embedding_dim, 8)
        self.linear2 = nn.Linear(8, 1) 
開發者ID:PyThaiNLP,項目名稱:attacut,代碼行數:19,代碼來源:nn_with_sep_pooling.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, __C, atten=False):
        super(BC, self).__init__()

        self.__C = __C
        self.v_net = MLP([__C.IMG_FEAT_SIZE,
                          __C.BA_HIDDEN_SIZE], dropout_r=__C.DROPOUT_R)
        self.q_net = MLP([__C.HIDDEN_SIZE,
                          __C.BA_HIDDEN_SIZE], dropout_r=__C.DROPOUT_R)
        if not atten:
            self.p_net = nn.AvgPool1d(__C.K_TIMES, stride=__C.K_TIMES)
        else:            
            self.dropout = nn.Dropout(__C.CLASSIFER_DROPOUT_R)  # attention

            self.h_mat = nn.Parameter(torch.Tensor(
                1, __C.GLIMPSE, 1, __C.BA_HIDDEN_SIZE).normal_())
            self.h_bias = nn.Parameter(
                torch.Tensor(1, __C.GLIMPSE, 1, 1).normal_()) 
開發者ID:MILVLG,項目名稱:openvqa,代碼行數:19,代碼來源:ban.py

示例5: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=[.2,.5], k=3):
        super(BCNet, self).__init__()
        
        self.c = 32
        self.k = k
        self.v_dim = v_dim; self.q_dim = q_dim
        self.h_dim = h_dim; self.h_out = h_out

        self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout[0])
        self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout[0])
        self.dropout = nn.Dropout(dropout[1]) # attention
        if 1 < k:
            self.p_net = nn.AvgPool1d(self.k, stride=self.k)
        
        if None == h_out:
            pass
        elif h_out <= self.c:
            self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
            self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
        else:
            self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None) 
開發者ID:jnhwkim,項目名稱:ban-vqa,代碼行數:23,代碼來源:bc.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, kernel_size, segment_num=None):
        """
        Args:
            input_size: dimention of input embedding
            kernel_size: kernel_size for CNN
            padding: padding for CNN
        hidden_size: hidden size
        """
        super().__init__()
        self.segment_num = segment_num
        if self.segment_num != None:
            self.mask_embedding = nn.Embedding(segment_num + 1, segment_num)
            self.mask_embedding.weight.data.copy_(torch.FloatTensor(np.concatenate([np.zeros(segment_num), np.identity(segment_num)], axis = 0)))
            self.mask_embedding.weight.requires_grad = False
        self.pool = nn.AvgPool1d(kernel_size) 
開發者ID:thunlp,項目名稱:OpenNRE,代碼行數:17,代碼來源:avg_pool.py

示例7: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, mot_en_channels, body_en_channels, view_en_channels, de_channels):
        super(AutoEncoder3x, self).__init__()

        assert mot_en_channels[0] == de_channels[-1] and \
               mot_en_channels[-1] + body_en_channels[-1] + view_en_channels[-1] == de_channels[0]

        self.mot_encoder = Encoder(mot_en_channels)
        self.body_encoder = Encoder(body_en_channels, kernel_size=7,
                                    global_pool=F.max_pool1d, convpool=nn.MaxPool1d, compress=True)
        self.view_encoder = Encoder(view_en_channels, kernel_size=7,
                                    global_pool=F.avg_pool1d, convpool=nn.AvgPool1d, compress=True)
        self.decoder = Decoder(de_channels) 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:14,代碼來源:networks.py

示例8: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, __C, img_feat_size, ques_feat_size, is_first):
        super(MFB, self).__init__()
        self.__C = __C
        self.is_first = is_first
        self.proj_i = nn.Linear(img_feat_size, __C.MFB_K * __C.MFB_O)
        self.proj_q = nn.Linear(ques_feat_size, __C.MFB_K * __C.MFB_O)
        self.dropout = nn.Dropout(__C.DROPOUT_R)
        self.pool = nn.AvgPool1d(__C.MFB_K, stride=__C.MFB_K) 
開發者ID:MILVLG,項目名稱:openvqa,代碼行數:10,代碼來源:mfb.py

示例9: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def forward(self, x):
        r"""
        :param torch.Tensor x: [N, C, L] 初始tensor
        :return: torch.Tensor x: [N, C] avg pool後的結果
        """
        # [N,C,L] -> [N,C]
        kernel_size = x.size(2)
        pooling = nn.AvgPool1d(
            kernel_size=kernel_size,
            stride=self.stride,
            padding=self.padding)
        x = pooling(x)
        return x.squeeze(dim=-1) 
開發者ID:fastnlp,項目名稱:fastNLP,代碼行數:15,代碼來源:pooling.py

示例10: avgpooling_factory

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def avgpooling_factory(dim):
    types = [nn.AvgPool1d, nn.AvgPool2d, nn.AvgPool3d]
    return types[dim - 1] 
開發者ID:Project-MONAI,項目名稱:MONAI,代碼行數:5,代碼來源:factories.py

示例11: test_avg_pool1d

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def test_avg_pool1d(self, input_shape, kernel_size, stride, pad, include_pad):
        if pad > kernel_size / 2:
            # Because this test is xfail, we have to fail rather than
            # just return here, otherwise these test cases unexpectedly pass.
            # This can be changed to `return` once the above radar
            # is fixed and the test is no longer xfail.
            raise ValueError("pad must be less than half the kernel size")
        model = nn.AvgPool1d(kernel_size, stride, pad, False, include_pad)
        run_numerical_test(input_shape, model) 
開發者ID:apple,項目名稱:coremltools,代碼行數:11,代碼來源:test_numerical.py

示例12: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self,seq_len, hidden_size,output_size):
        super(Wavelet_LSTM,self).__init__()
        self.seq_len = seq_len
        self.hidden_size = hidden_size
        self.output_size = output_size

        self.mWDN1_H = nn.Linear(seq_len,seq_len)
        self.mWDN1_L = nn.Linear(seq_len,seq_len)
        self.mWDN2_H = nn.Linear(int(seq_len/2),int(seq_len/2))
        self.mWDN2_L = nn.Linear(int(seq_len/2),int(seq_len/2))
        self.a_to_x = nn.AvgPool1d(2)
        self.sigmoid = nn.Sigmoid()
        self.lstm_xh1 = nn.LSTM(1,hidden_size,batch_first=True)
        self.lstm_xh2 = nn.LSTM(1,hidden_size,batch_first=True)
        self.lstm_xl2 = nn.LSTM(1,hidden_size,batch_first=True)
        self.output = nn.Linear(hidden_size,output_size)

        self.l_filter = [-0.0106,0.0329,0.0308,-0.187,-0.028,0.6309,0.7148,0.2304]
        self.h_filter = [-0.2304,0.7148,-0.6309,-0.028,0.187,0.0308,-0.0329,-0.0106]

        self.cmp_mWDN1_H = ToVariable(self.create_W(seq_len,False,is_comp=True))
        self.cmp_mWDN1_L = ToVariable(self.create_W(seq_len,True,is_comp=True))
        self.cmp_mWDN2_H = ToVariable(self.create_W(int(seq_len/2),False,is_comp=True))
        self.cmp_mWDN2_L = ToVariable(self.create_W(int(seq_len/2),True,is_comp=True))

        self.mWDN1_H.weight = torch.nn.Parameter(ToVariable(self.create_W(seq_len,False)))
        self.mWDN1_L.weight = torch.nn.Parameter(ToVariable(self.create_W(seq_len,True)))
        self.mWDN2_H.weight = torch.nn.Parameter(ToVariable(self.create_W(int(seq_len/2),False)))
        self.mWDN2_L.weight = torch.nn.Parameter(ToVariable(self.create_W(int(seq_len/2),True))) 
開發者ID:yakouyang,項目名稱:Multilevel_Wavelet_Decomposition_Network_Pytorch,代碼行數:31,代碼來源:model.py

示例13: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU',
                 dropout=[.2, .5], k=3):
        super(BCNet, self).__init__()

        self.c = 32
        self.k = k
        self.v_dim = v_dim
        self.q_dim = q_dim
        self.h_dim = h_dim
        self.h_out = h_out

        self.v_net = FCNet([v_dim, h_dim * self.k], act=act,
                           dropout=dropout[0])
        self.q_net = FCNet([q_dim, h_dim * self.k], act=act,
                           dropout=dropout[0])
        self.dropout = nn.Dropout(dropout[1])  # attention
        if 1 < k:
            self.p_net = nn.AvgPool1d(self.k, stride=self.k)

        if h_out is None:
            pass
        elif h_out <= self.c:
            self.h_mat = nn.Parameter(
                        torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
            self.h_bias = nn.Parameter(
                        torch.Tensor(1, h_out, 1, 1).normal_())
        else:
            self.h_net = weight_norm(
                            nn.Linear(h_dim * self.k, h_out), dim=None) 
開發者ID:linjieli222,項目名稱:VQA_ReGAT,代碼行數:31,代碼來源:bc.py

示例14: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, kernal_size, pre_mask, post_mask):
        super(AvgPool, self).__init__()
        self.avg_pool = nn.AvgPool1d(kernal_size, 1, padding=(kernal_size - 1) // 2)
        self.pre_mask = pre_mask
        self.post_mask = post_mask
        self.mask_opt = Mask() 
開發者ID:microsoft,項目名稱:nni,代碼行數:8,代碼來源:ops.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AvgPool1d [as 別名]
def __init__(self, layer_conf):
        super(Pooling1D, self).__init__(layer_conf)
        self.pool = None
        if layer_conf.pool_type == "max":
            self.pool = nn.MaxPool1d(kernel_size=layer_conf.window_size, stride=layer_conf.stride,
                                     padding=layer_conf.padding)
        elif layer_conf.pool_type == "mean":
            self.pool = nn.AvgPool1d(kernel_size=layer_conf.window_size, stride=layer_conf.stride,
                                     padding=layer_conf.padding) 
開發者ID:microsoft,項目名稱:NeuronBlocks,代碼行數:11,代碼來源:Pooling1D.py


注:本文中的torch.nn.AvgPool1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。