當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.AdaptiveAvgPool3d方法代碼示例

本文整理匯總了Python中torch.nn.AdaptiveAvgPool3d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.AdaptiveAvgPool3d方法的具體用法?Python nn.AdaptiveAvgPool3d怎麽用?Python nn.AdaptiveAvgPool3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.AdaptiveAvgPool3d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, in_size, out_size, is_batchnorm):
        super(UnetGatingSignal3, self).__init__()
        self.fmap_size = (4, 4, 4)

        if is_batchnorm:
            self.conv1 = nn.Sequential(nn.Conv3d(in_size, in_size//2, (1,1,1), (1,1,1), (0,0,0)),
                                       nn.BatchNorm3d(in_size//2),
                                       nn.ReLU(inplace=True),
                                       nn.AdaptiveAvgPool3d(output_size=self.fmap_size),
                                       )
            self.fc1 = nn.Linear(in_features=(in_size//2) * self.fmap_size[0] * self.fmap_size[1] * self.fmap_size[2],
                                 out_features=out_size, bias=True)
        else:
            self.conv1 = nn.Sequential(nn.Conv3d(in_size, in_size//2, (1,1,1), (1,1,1), (0,0,0)),
                                       nn.ReLU(inplace=True),
                                       nn.AdaptiveAvgPool3d(output_size=self.fmap_size),
                                       )
            self.fc1 = nn.Linear(in_features=(in_size//2) * self.fmap_size[0] * self.fmap_size[1] * self.fmap_size[2],
                                 out_features=out_size, bias=True)

        # initialise the blocks
        for m in self.children():
            init_weights(m, init_type='kaiming') 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:25,代碼來源:utils.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, block, layers, shortcut_type='B', cardinality=32, num_classes=400):
        self.inplanes = 64
        super(ResNeXt3D, self).__init__()
        self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type, cardinality)
        self.layer2 = self._make_layer(block, 256, layers[1], shortcut_type, cardinality, stride=2)
        self.layer3 = self._make_layer(block, 512, layers[2], shortcut_type, cardinality, stride=2)
        self.layer4 = self._make_layer(block, 1024, layers[3], shortcut_type, cardinality, stride=2)
        self.avgpool = nn.AdaptiveAvgPool3d(1)
        self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:22,代碼來源:resnext3D.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self,
                 block,
                 layers,
                 nonlocal_layers,
                 shortcut_type='A',
                 num_classes=339):
        self.inplanes = 64
        super().__init__()
        self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], nonlocal_layers[0], shortcut_type)
        self.layer2 = self._make_layer(block, 128, layers[1], nonlocal_layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], nonlocal_layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], nonlocal_layers[3], shortcut_type, stride=2)
        self.avgpool = nn.AdaptiveAvgPool3d(1)
        self.last_linear = nn.Linear(512 * block.expansion, num_classes)

        self.init_weights() 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:22,代碼來源:nonlocalnet.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self,
                 block,
                 layers,
                 k=1,
                 shortcut_type='B',
                 num_classes=400):
        self.inplanes = 64
        super(WideResNet, self).__init__()
        self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64 * k, layers[0], shortcut_type)
        self.layer2 = self._make_layer(block, 128 * k, layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(block, 256 * k, layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(block, 512 * k, layers[3], shortcut_type, stride=2)
        self.avgpool = nn.AdaptiveAvgPool3d(1)
        self.fc = nn.Linear(512 * k * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:27,代碼來源:wideresnet3D.py

示例5: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def forward(self, input, lateral):

        x = self.conv1(input)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = torch.cat([x, lateral[0]], dim=1)
        x = self.res2(x)
        x = torch.cat([x, lateral[1]], dim=1)
        x = self.res3(x)
        x = torch.cat([x, lateral[2]], dim=1)
        x = self.res4(x)
        x = torch.cat([x, lateral[3]], dim=1)
        x = self.res5(x)
        x = nn.AdaptiveAvgPool3d(1)(x)
        x = x.view(-1, x.size(1))
        return x 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:20,代碼來源:slowfast.py

示例6: slow_path

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def slow_path(self, input, lateral):
        x = self.slow_conv1(input)
        x = self.slow_bn1(x)
        x = self.slow_relu(x)
        x = self.slow_maxpool(x)
        x = torch.cat([x, lateral[0]], dim=1)
        x = self.slow_res2(x)
        x = torch.cat([x, lateral[1]], dim=1)
        x = self.slow_res3(x)
        x = torch.cat([x, lateral[2]], dim=1)
        x = self.slow_res4(x)
        x = torch.cat([x, lateral[3]], dim=1)
        x = self.slow_res5(x)
        x = nn.AdaptiveAvgPool3d(1)(x)
        x = x.view(-1, x.size(1))
        return x 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:18,代碼來源:slowfast.py

示例7: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self,in_channel,out_channel):
        super(S3D_G_block, self).__init__()
        # out_channel=[1x1x1,3x3x3_reduce,3x3x3,3x3x3_reduce,3x3x3,pooling_reduce]


        self.branch1 = BasicConv3d(in_channel,out_channel[0], kernel_size=(3,1,1), stride=1, padding=(1,0,0))
        self.branch2 = nn.Sequential(
            BasicConv3d(in_channel, out_channel[1], kernel_size=1, stride=1),
            BasicConv3d(out_channel[1], out_channel[1],kernel_size=(1,3,3), stride=1, padding=(0,1,1)),
            BasicConv3d(out_channel[1], out_channel[2], kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0))
        )
        self.branch3 = nn.Sequential(
            BasicConv3d(in_channel, out_channel[3], kernel_size=1, stride=1),
            BasicConv3d(out_channel[3], out_channel[3], kernel_size=(1, 3, 3), stride=1, padding= (0, 1, 1)),
            BasicConv3d(out_channel[3], out_channel[4], kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0))
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool3d(kernel_size=3,stride=1,padding=1),
            BasicConv3d(in_channel, out_channel[5], kernel_size=(3,1,1), stride=1,padding=(1,0,0))
        )
        self.squeeze = nn.AdaptiveAvgPool3d(1)
        # we replace weight matrix with 1D conv to reduce the para
        self.excitation = nn.Conv1d(1, 1, (3,1,1), stride=1,padding=(1,0,0))
        self.sigmoid=nn.Sigmoid() 
開發者ID:MRzzm,項目名稱:action-recognition-models-pytorch,代碼行數:26,代碼來源:S3D_G.py

示例8: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self,non_layers=[0,1,1,1],stripes=[16,16,16,16],non_type='normal',temporal=None):
        super(Resnet50_NL,self).__init__()
        original = models.resnet50(pretrained=True).state_dict()
        if non_type == 'normal':
            self.backbone = res.ResNet_Video_nonlocal(last_stride=1,non_layers=non_layers)
        elif non_type == 'stripe':
            self.backbone = res.ResNet_Video_nonlocal_stripe(last_stride = 1, non_layers=non_layers, stripes=stripes)
        elif non_type == 'hr':
            self.backbone = res.ResNet_Video_nonlocal_hr(last_stride = 1, non_layers=non_layers, stripes=stripes)
        elif non_type == 'stripe_hr':
            self.backbone = res.ResNet_Video_nonlocal_stripe_hr(last_stride = 1, non_layers=non_layers, stripes=stripes)
        for key in original:
            if key.find('fc') != -1:
                continue
            self.backbone.state_dict()[key].copy_(original[key])
        del original

        self.temporal = temporal
        if self.temporal == 'Done':
            self.avgpool = nn.AdaptiveAvgPool3d(1) 
開發者ID:jackie840129,項目名稱:STE-NVAN,代碼行數:22,代碼來源:models.py

示例9: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, adaptive_pool=True, spatial_type='avg', spatial_size=1, temporal_size=1):
        super(SlowFastSpatialTemporalModule, self).__init__()

        self.adaptive_pool = adaptive_pool
        assert spatial_type in ['avg']
        self.spatial_type = spatial_type

        self.spatial_size = spatial_size if not isinstance(spatial_size, int) else (spatial_size, spatial_size)
        self.temporal_size = temporal_size
        self.pool_size = (self.temporal_size, ) + self.spatial_size

        if self.adaptive_pool:
            if self.spatial_type == 'avg':
                self.op = nn.AdaptiveAvgPool3d(self.pool_size)
        else:
            raise NotImplementedError 
開發者ID:open-mmlab,項目名稱:mmaction,代碼行數:18,代碼來源:slowfast_spatial_temporal_module.py

示例10: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, channels,
                 branch=2,
                 ratio=4,
                 stride=1,
                 groups=1,
                 min_channels=32,
                 norm_type=nn.BatchNorm3d,
                 act_type=nn.ReLU):
        super(SKConv3d, self).__init__()
        dim = max(channels // ratio, min_channels)
        self.branch = branch
        self.convs = nn.ModuleList([])
        for i in range(branch):
            self.convs.append(
                ConvBnAct3d(channels, channels, kernel_size=3 + i * 2,
                            padding=i + 1, stride=stride, groups=groups,
                            norm_type=norm_type,
                            act_type=act_type)
            )
        self.avg_pool = nn.AdaptiveAvgPool3d(1)
        self.fc = nn.Linear(channels, dim)
        self.fcs = nn.ModuleList([])
        for i in range(branch):
            self.fcs.append(nn.Linear(dim, channels))
        self.softmax = nn.Softmax(dim=1) 
開發者ID:Hsuxu,項目名稱:Magic-VNet,代碼行數:27,代碼來源:skunit.py

示例11: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, block, layers, num_classes=400, num_channels=3, decomposed=True):
        self.inplanes = 64
        super(R3D, self).__init__()

        self.decomposed = decomposed

        self.conv1 = make_conv(num_channels, 64, middle_planes=45, kernel_size=(3, 7, 7), stride=(1, 2, 2),
                               decomposed=decomposed)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], downsample=True)
        self.layer3 = self._make_layer(block, 256, layers[2], downsample=True)
        self.layer4 = self._make_layer(block, 512, layers[3], downsample=True)
        self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                torch.nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:sheqi,項目名稱:GAN_Review,代碼行數:27,代碼來源:r3d_nl.py

示例12: SlowPath

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def SlowPath(self, input, lateral):
        x = self.slow_conv1(input)
        x = self.slow_bn1(x)
        x = self.slow_relu(x)
        x = self.slow_maxpool(x)
        x = torch.cat([x, lateral[0]],dim=1)
        x = self.slow_res2(x)
        x = torch.cat([x, lateral[1]],dim=1)
        x = self.slow_res3(x)
        x = torch.cat([x, lateral[2]],dim=1)
        x = self.slow_res4(x)
        x = torch.cat([x, lateral[3]],dim=1)
        x = self.slow_res5(x)
        #x = nn.AdaptiveAvgPool3d(1)(x)
        #x = x.view(-1, x.size(1))


        return x 
開發者ID:sheqi,項目名稱:GAN_Review,代碼行數:20,代碼來源:slowfast_my.py

示例13: forward

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def forward(self,fast_input,slow_input):
        fast_output=self.fast_res5(fast_input)
        slow_output=self.slow_res5(slow_input)
        x1 = nn.AdaptiveAvgPool3d(1)(fast_output)
        x2 = nn.AdaptiveAvgPool3d(1)(slow_output)
        x1 = x1.view(-1, x1.size(1))
        x2 = x2.view(-1, x2.size(1))
        x = torch.cat([x1, x2], dim=1)
        return x 
開發者ID:MagicChuyi,項目名稱:SlowFast-Network-pytorch,代碼行數:11,代碼來源:hidden_for_roi2.py

示例14: fast_path

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def fast_path(self, input):
        lateral = []
        x = self.fast_conv1(input)
        x = self.fast_bn1(x)
        x = self.fast_relu(x)
        pool1 = self.fast_maxpool(x)
        lateral_p = self.lateral_p1(pool1)
        lateral.append(lateral_p)

        res2 = self.fast_res2(pool1)
        lateral_res2 = self.lateral_res2(res2)
        lateral.append(lateral_res2)

        res3 = self.fast_res3(res2)
        lateral_res3 = self.lateral_res3(res3)
        lateral.append(lateral_res3)

        res4 = self.fast_res4(res3)
        lateral_res4 = self.lateral_res4(res4)
        lateral.append(lateral_res4)

        res5 = self.fast_res5(res4)
        x = nn.AdaptiveAvgPool3d(1)(res5)
        x = x.view(-1, x.size(1))

        return x, lateral 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:28,代碼來源:slowfast.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool3d [as 別名]
def __init__(self, block, layers, shortcut_type='B', num_classes=339):
        self.inplanes = 64
        super(ResNet3D, self).__init__()
        self.conv1 = self.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False)
        self.bn1 = nn.BatchNorm3d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
        self.layer2 = self._make_layer(block, 128, layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], shortcut_type, stride=2)
        self.avgpool = nn.AdaptiveAvgPool3d(1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        self.init_weights() 
開發者ID:alexandonian,項目名稱:pretorched-x,代碼行數:17,代碼來源:resnet3D.py


注:本文中的torch.nn.AdaptiveAvgPool3d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。