本文整理匯總了Python中torch.nn.AdaptiveAvgPool2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.AdaptiveAvgPool2d方法的具體用法?Python nn.AdaptiveAvgPool2d怎麽用?Python nn.AdaptiveAvgPool2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn
的用法示例。
在下文中一共展示了nn.AdaptiveAvgPool2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, in_channels, out_channels, dilations=(1, 3, 6, 1)):
super().__init__()
assert dilations[-1] == 1
self.aspp = nn.ModuleList()
for dilation in dilations:
kernel_size = 3 if dilation > 1 else 1
padding = dilation if dilation > 1 else 0
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
dilation=dilation,
padding=padding,
bias=True)
self.aspp.append(conv)
self.gap = nn.AdaptiveAvgPool2d(1)
self.init_weights()
示例2: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(DetNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_new_layer(256, layers[3])
self.layer5 = self._make_new_layer(256, layers[4])
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(1024, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
示例3: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self,block,block_list):
super(ResNet,self).__init__()
self.head_conv = nn.Sequential(
nn.Conv2d(3,64,7,2,3,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),)
self.maxpool_1 = nn.MaxPool2d(3,2,1)
b_ = block.expansion
self.layer_1 = self._make_layer(block,64,64*b_,block_list[0],1)
self.layer_2 = self._make_layer(block,64*b_,128*b_,block_list[1],2)
self.layer_3 = self._make_layer(block,128*b_,256*b_,block_list[2],2)
self.layer_4 = self._make_layer(block,256*b_,512*b_,block_list[3],2)
self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1))
self.fc_1 = nn.Sequential(
nn.Flatten(),
nn.Linear(512*b_,1000),
nn.Softmax(dim = 1),)
self._initialization()
示例4: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self,block,block_list,cardinality):
super(ResNet,self).__init__()
self.head_conv = nn.Sequential(
nn.Conv2d(3,64,7,2,3,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),)
self.maxpool_1 = nn.MaxPool2d(3,2,1)
b_ = block.expansion
self.layer_1 = self._make_layer(block,64,128*b_,block_list[0],1,cardinality)
self.layer_2 = self._make_layer(block,128*b_,256*b_,block_list[1],2,cardinality)
self.layer_3 = self._make_layer(block,256*b_,512*b_,block_list[2],2,cardinality)
self.layer_4 = self._make_layer(block,512*b_,1024*b_,block_list[3],2,cardinality)
self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1))
self.fc_1 = nn.Sequential(
nn.Flatten(),
nn.Linear(1024*b_,1000),
nn.Softmax(dim = 1),)
self._initialization()
示例5: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self,k,block_list,num_init_features=64, bn_size=4,
drop_rate=0, memory_efficient=False):
super(DenseNet,self).__init__()
self.head_conv = nn.Sequential(
nn.Conv2d(3,num_init_features,7,2,3,bias=False),
nn.BatchNorm2d(num_init_features),
nn.ReLU(inplace=True),)
self.maxpool_1 = nn.MaxPool2d(3,2,1)
self.dense_body, self.final_channels = self._make_layers(num_init_features,
bn_size,block_list,k,drop_rate, memory_efficient)
self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1))
self.fc_1 = nn.Sequential(
nn.Flatten(),
nn.Linear(self.final_channels,1000),
nn.Softmax(dim = 1),)
self._initialization()
示例6: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self,):
super(MobileNet_V1,self).__init__()
self.conv = nn.Sequential(BasicConv(3,32,3,2,1),
DPConv(32,64,1),
DPConv(64,128,2),
DPConv(128,128,1),
DPConv(128,256,2),
DPConv(256,256,1),
DPConv(256,512,2),
DPConv(512,512,1),
DPConv(512,512,1),
DPConv(512,512,1),
DPConv(512,512,1),
DPConv(512,512,1),
DPConv(512,1024,2),
DPConv(1024,1024,1),)
self.final = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(1024,1000),
nn.Softmax(dim=1)
)
示例7: _reconstruct_inception
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def _reconstruct_inception(self, basemodel):
model = nn.Module()
model.features = nn.Sequential(basemodel.Conv2d_1a_3x3,
basemodel.Conv2d_2a_3x3,
basemodel.Conv2d_2b_3x3,
nn.MaxPool2d(kernel_size=3, stride=2),
basemodel.Conv2d_3b_1x1,
basemodel.Conv2d_4a_3x3,
nn.MaxPool2d(kernel_size=3, stride=2),
basemodel.Mixed_5b,
basemodel.Mixed_5c,
basemodel.Mixed_5d,
basemodel.Mixed_6a,
basemodel.Mixed_6b,
basemodel.Mixed_6c,
basemodel.Mixed_6d,
basemodel.Mixed_6e,
basemodel.Mixed_7a,
basemodel.Mixed_7b,
basemodel.Mixed_7c)
model.representation = nn.AdaptiveAvgPool2d((1, 1))
model.classifier = basemodel.fc
model.representation_dim=basemodel.fc.weight.size(1)
return model
示例8: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, num_classes, base_size=64, dropout=0.2,
ratio=16, kernel_size=7):
super().__init__()
self.conv = nn.Sequential(
ConvBlock(in_channels=3, out_channels=base_size),
ConvBlock(in_channels=base_size, out_channels=base_size*2),
ConvBlock(in_channels=base_size*2, out_channels=base_size*4),
ConvBlock(in_channels=base_size*4, out_channels=base_size*8),
)
self.attention = ConvolutionalBlockAttentionModule(base_size*8,
ratio=ratio,
kernel_size=kernel_size)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(base_size*8, base_size*2),
nn.PReLU(),
nn.BatchNorm1d(base_size*2),
nn.Dropout(dropout/2),
nn.Linear(base_size*2, num_classes),
)
示例9: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, in_planes, out_planes,
reduction=1, norm_layer=nn.BatchNorm2d):
super(FeatureFusion, self).__init__()
self.conv_1x1 = ConvBnRelu(in_planes, out_planes, 1, 1, 0,
has_bn=True, norm_layer=norm_layer,
has_relu=True, has_bias=False)
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
ConvBnRelu(out_planes, out_planes // reduction, 1, 1, 0,
has_bn=False, norm_layer=norm_layer,
has_relu=True, has_bias=False),
ConvBnRelu(out_planes // reduction, out_planes, 1, 1, 0,
has_bn=False, norm_layer=norm_layer,
has_relu=False, has_bias=False),
nn.Sigmoid()
)
示例10: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, config, in_channels):
super(FastRCNNPredictor, self).__init__()
assert in_channels is not None
num_inputs = in_channels
num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.cls_score = nn.Linear(num_inputs, num_classes)
num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes
self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4)
nn.init.normal_(self.cls_score.weight, mean=0, std=0.01)
nn.init.constant_(self.cls_score.bias, 0)
nn.init.normal_(self.bbox_pred.weight, mean=0, std=0.001)
nn.init.constant_(self.bbox_pred.bias, 0)
示例11: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, inplanes, num_classes, expplanes1, expplanes2):
super(LastBlockLarge, self).__init__()
self.conv1 = nn.Conv2d(inplanes, expplanes1, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(expplanes1)
self.act1 = HardSwish(inplace=True)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.conv2 = nn.Conv2d(expplanes1, expplanes2, kernel_size=1, stride=1)
self.act2 = HardSwish(inplace=True)
self.dropout = nn.Dropout(p=0.2, inplace=True)
self.fc = nn.Linear(expplanes2, num_classes)
self.expplanes1 = expplanes1
self.expplanes2 = expplanes2
self.inplanes = inplanes
self.num_classes = num_classes
示例12: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, inplanes, kernel=3, reduction=16, with_padding=False):
super(GDWSe2d, self).__init__()
if with_padding:
padding = kernel // 2
else:
padding = 0
self.globle_dw = nn.Conv2d(inplanes, inplanes, kernel_size=kernel, padding=padding, stride=1,
groups=inplanes, bias=False)
self.bn = nn.BatchNorm2d(inplanes)
self.relu = nn.ReLU(inplace=True)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(inplanes, inplanes // reduction),
nn.ReLU(inplace=True),
nn.Linear(inplanes // reduction, inplanes),
nn.Sigmoid()
)
self._init_weights()
示例13: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, dim_in):
super().__init__()
self.dim_in = dim_in
self.cls_on = cfg.FAST_RCNN.CLS_ON
self.reg_on = cfg.FAST_RCNN.REG_ON
if self.cls_on:
self.cls_score = nn.Linear(self.dim_in, cfg.MODEL.NUM_CLASSES)
init.normal_(self.cls_score.weight, std=0.01)
init.constant_(self.cls_score.bias, 0)
# self.avgpool = nn.AdaptiveAvgPool2d(1)
if self.reg_on:
if cfg.FAST_RCNN.CLS_AGNOSTIC_BBOX_REG: # bg and fg
self.bbox_pred = nn.Linear(self.dim_in, 4 * 2)
else:
self.bbox_pred = nn.Linear(self.dim_in, 4 * cfg.MODEL.NUM_CLASSES)
init.normal_(self.bbox_pred.weight, std=0.001)
init.constant_(self.bbox_pred.bias, 0)
示例14: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self, config, in_channels):
super(FastRCNNPredictor, self).__init__()
assert in_channels is not None
num_inputs = in_channels
num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.cls_score = nn.Linear(num_inputs, num_classes)
num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes
self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4)
self.quad_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 8)
nn.init.normal_(self.cls_score.weight, mean=0, std=0.01)
nn.init.constant_(self.cls_score.bias, 0)
nn.init.normal_(self.bbox_pred.weight, mean=0, std=0.001)
nn.init.constant_(self.bbox_pred.bias, 0)
nn.init.normal_(self.quad_pred.weight, mean=0, std=0.001)
nn.init.constant_(self.quad_pred.bias, 0)
示例15: __init__
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import AdaptiveAvgPool2d [as 別名]
def __init__(self,
in_channels,
ratio,
pooling_type='att',
fusion_types=('channel_add', )):
super(ContextBlock, self).__init__()
assert pooling_type in ['avg', 'att']
assert isinstance(fusion_types, (list, tuple))
valid_fusion_types = ['channel_add', 'channel_mul']
assert all([f in valid_fusion_types for f in fusion_types])
assert len(fusion_types) > 0, 'at least one fusion should be used'
self.in_channels = in_channels
self.ratio = ratio
self.planes = int(in_channels * ratio)
self.pooling_type = pooling_type
self.fusion_types = fusion_types
if pooling_type == 'att':
self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size=1)
self.softmax = nn.Softmax(dim=2)
else:
self.avg_pool = nn.AdaptiveAvgPool2d(1)
if 'channel_add' in fusion_types:
self.channel_add_conv = nn.Sequential(
nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(inplace=True), # yapf: disable
nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
else:
self.channel_add_conv = None
if 'channel_mul' in fusion_types:
self.channel_mul_conv = nn.Sequential(
nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(inplace=True), # yapf: disable
nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
else:
self.channel_mul_conv = None
self.reset_parameters()