當前位置: 首頁>>代碼示例>>Python>>正文


Python multiprocessing.spawn方法代碼示例

本文整理匯總了Python中torch.multiprocessing.spawn方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.spawn方法的具體用法?Python multiprocessing.spawn怎麽用?Python multiprocessing.spawn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.multiprocessing的用法示例。


在下文中一共展示了multiprocessing.spawn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        # torch.backends.cudnn.enabled = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    args.local_rank = int(os.environ["SLURM_PROCID"])
    args.world_size = int(os.environ["SLURM_NPROCS"])
    ngpus_per_node = torch.cuda.device_count()

    job_id = os.environ["SLURM_JOBID"]
    args.dist_url = "file://{}.{}".format(os.path.realpath(args.dist_file), job_id)
    mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) 
開發者ID:tczhangzhi,項目名稱:pytorch-distributed,代碼行數:23,代碼來源:distributed_slurm_main.py

示例2: setup

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def setup(rank, device_ids, args):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'

    # initialize the process group
    dist.init_process_group("gloo", rank=rank, world_size=len(device_ids))

    train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, \
    retrain_model_path, gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, total_callers, \
    train_mode = args

    # issue with semaphore lock: https://github.com/pytorch/pytorch/issues/2517
    # mp.set_start_method('spawn')

    # Explicitly setting seed to make sure that models created in two processes
    # start from same random weights and biases. https://github.com/pytorch/pytorch/issues/2517
    torch.manual_seed(42)
    train(train_file, test_file, batch_size, epochs, gpu_mode, num_workers, retrain_model, retrain_model_path,
          gru_layers, hidden_size, learning_rate, weight_decay, model_dir, stats_dir, train_mode,
          total_callers, rank, device_ids[rank])
    cleanup() 
開發者ID:kishwarshafin,項目名稱:helen,代碼行數:23,代碼來源:train_distributed.py

示例3: predict_gpu

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def predict_gpu(file_chunks, output_filepath, model_path, batch_size, total_callers, devices, num_workers):
    """
    Create a prediction table/dictionary of an images set using a trained model.
    :param file_chunks: Path to chunked files
    :param batch_size: Batch size used for prediction
    :param model_path: Path to a trained model
    :param output_filepath: Path to output directory
    :param total_callers: Number of callers to spawn
    :param devices: List of available CUDA devices
    :param num_workers: Number of workers to be used by the dataloader
    :return: Prediction dictionary
    """
    # create the arguments to send for prediction
    args = (output_filepath, model_path, batch_size, num_workers)

    # spawn the processes to call the prediction method
    mp.spawn(setup,
             args=(total_callers, args, file_chunks, devices),
             nprocs=total_callers,
             join=True) 
開發者ID:kishwarshafin,項目名稱:helen,代碼行數:22,代碼來源:predict_gpu.py

示例4: _inference

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def _inference(self, cand):
        # bn_statistic
        parent_conn, child_conn = mp.Pipe()
        args = dict({"local_rank": 0, "distributed": False})
        mp.spawn(
            bn_statistic, nprocs=self.ngpus_per_node,
            args=(self.ngpus_per_node, cfg, args, cand, child_conn))
        salt = parent_conn.recv()

        # fitness
        parent_conn, child_conn = mp.Pipe()
        args = dict({"local_rank": 0, "distributed": False})
        mp.spawn(
            fitness, nprocs=self.ngpus_per_node,
            args=(self.ngpus_per_node, cfg, args, cand, salt, child_conn))

        if os.path.isfile(os.path.join(cfg.OUTPUT_DIR, salt+".pth")):
            os.remove(os.path.join(cfg.OUTPUT_DIR, salt+".pth"))

        return parent_conn.recv() 
開發者ID:megvii-model,項目名稱:DetNAS,代碼行數:22,代碼來源:test_server.py

示例5: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def main():

    if cfg.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if cfg.dist_url == "env://" and cfg.world_size == -1:
        cfg.world_size = int(os.environ["WORLD_SIZE"])

    cfg.distributed = cfg.world_size > 1 or cfg.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if cfg.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        cfg.world_size = ngpus_per_node * cfg.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, cfg))
    else:
        # Simply call main_worker function
        main_worker(cfg.gpu, ngpus_per_node, cfg) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:24,代碼來源:imagenet_torch_loader.py

示例6: test_torch_mp_example

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def test_torch_mp_example(self):
        # in practice set the max_interval to a larger value (e.g. 60 seconds)
        mp_queue = mp.get_context("spawn").Queue()
        server = timer.LocalTimerServer(mp_queue, max_interval=0.01)
        server.start()

        world_size = 8

        # all processes should complete successfully
        # since start_process does NOT take context as parameter argument yet
        # this method WILL FAIL (hence the test is disabled)
        torch_mp.spawn(
            fn=_happy_function, args=(mp_queue,), nprocs=world_size, join=True
        )

        with self.assertRaises(Exception):
            # torch.multiprocessing.spawn kills all sub-procs
            # if one of them gets killed
            torch_mp.spawn(
                fn=_stuck_function, args=(mp_queue,), nprocs=world_size, join=True
            )

        server.stop() 
開發者ID:pytorch,項目名稱:elastic,代碼行數:25,代碼來源:local_timer_example.py

示例7: run

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def run(args):
    model = getattr(importlib.import_module(args.cam_network), 'CAM')()
    model.load_state_dict(torch.load(args.cam_weights_name + '.pth'), strict=True)
    model.eval()

    n_gpus = torch.cuda.device_count()

    dataset = voc12.dataloader.VOC12ClassificationDatasetMSF(args.train_list,
                                                             voc12_root=args.voc12_root, scales=args.cam_scales)
    dataset = torchutils.split_dataset(dataset, n_gpus)

    print('[ ', end='')
    multiprocessing.spawn(_work, nprocs=n_gpus, args=(model, dataset, args), join=True)
    print(']')

    torch.cuda.empty_cache() 
開發者ID:jiwoon-ahn,項目名稱:irn,代碼行數:18,代碼來源:make_cam.py

示例8: run

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def run(args):
    model = getattr(importlib.import_module(args.irn_network), 'EdgeDisplacement')()
    model.load_state_dict(torch.load(args.irn_weights_name), strict=False)
    model.eval()

    n_gpus = torch.cuda.device_count()

    dataset = voc12.dataloader.VOC12ClassificationDatasetMSF(args.infer_list,
                                                             voc12_root=args.voc12_root,
                                                             scales=(1.0,))
    dataset = torchutils.split_dataset(dataset, n_gpus)

    print("[", end='')
    multiprocessing.spawn(_work, nprocs=n_gpus, args=(model, dataset, args), join=True)
    print("]")

    torch.cuda.empty_cache() 
開發者ID:jiwoon-ahn,項目名稱:irn,代碼行數:19,代碼來源:make_sem_seg_labels.py

示例9: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def main():
    print("NCCL_IB_DISABLE: {}".format(os.getenv("NCCL_IB_DISABLE")))
    args = parser.parse_args()
    print("quick_run is {}".format(args.quick_run))
    print("output_dir is {}".format(args.output_dir))
    print("data_dir is {}".format(args.data_dir))
    print("cache_dir is {}".format(args.cache_dir))

    # shutil.rmtree(args.output_dir)
    os.makedirs(args.output_dir, exist_ok=True)
    os.makedirs(args.cache_dir, exist_ok=True)

    ngpus_per_node = torch.cuda.device_count()
    processor = ExtSumProcessor(model_name=args.model_name)
    summarizer = ExtractiveSummarizer(
        processor, args.model_name, args.encoder, args.max_pos_length, args.cache_dir
    )

    mp.spawn(
        main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, summarizer, args)
    ) 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:23,代碼來源:extractive_summarization_cnndm_distributed_train.py

示例10: test

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def test(self,
            p_model=None # the path to load the pretrained or previously self-trained model
            ):
        # Check
        if p_model is None or not is_file_here(p_model):
            self.log("Need to provide a valid model path")
            return

        # Set path
        match = re.search(r'\b/[0-9a-fA-F]{7}-cnn-(rgb|flow)[^/]*/\b', p_model)
        model_id = match.group()[1:-1]
        if model_id is None:
            self.log("Cannot find a valid model id from the model path.")
            return
        p_root = p_model[:match.start()] + "/" + model_id + "/"
        p_metadata_test = p_root + "metadata/metadata_test.json" # metadata path (test)
        save_log_path = p_root + "log/test.log" # path to save log files
        save_viz_path = p_root + "viz/" # path to save visualizations

        # Spawn processes
        n_gpu = torch.cuda.device_count()
        if False:#self.parallel and n_gpu > 1:
            # TODO: multiple GPUs will cause an error when generating summary videos
            self.can_parallel = True
            self.log("Let's use " + str(n_gpu) + " GPUs!")
            mp.spawn(self.test_worker, nprocs=n_gpu,
                    args=(n_gpu, p_model, save_log_path, self.p_frame, save_viz_path, p_metadata_test), join=True)
        else:
            self.test_worker(0, 1, p_model, save_log_path, self.p_frame, save_viz_path, p_metadata_test) 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:31,代碼來源:cnn_learner.py

示例11: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def main():
    args = parser.parse_args()

    ngpus_per_node = torch.cuda.device_count()

    args.world_size = ngpus_per_node * args.world_size
    mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) 
開發者ID:dnddnjs,項目名稱:pytorch-multigpu,代碼行數:9,代碼來源:train.py

示例12: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def main():
    args = parser.parse_args()

    mp.spawn(main_worker, nprocs=4, args=(4, args)) 
開發者ID:tczhangzhi,項目名稱:pytorch-distributed,代碼行數:6,代碼來源:multiprocessing_distributed.py

示例13: fit

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def fit(self,
            p_model=None, # the path to load the pretrained or previously self-trained model
            model_id_suffix="", # the suffix appended after the model id
            p_metadata_train="../data/split/metadata_train_split_0_by_camera.json", # metadata path (train)
            p_metadata_validation="../data/split/metadata_validation_split_0_by_camera.json", # metadata path (validation)
            p_metadata_test="../data/split/metadata_test_split_0_by_camera.json", # metadata path (test)
            save_model_path="../data/saved_i3d/[model_id]/model/", # path to save the models ([model_id] will be replaced)
            save_tensorboard_path="../data/saved_i3d/[model_id]/run/", # path to save data ([model_id] will be replaced)
            save_log_path="../data/saved_i3d/[model_id]/log/train.log", # path to save log files ([model_id] will be replaced)
            save_metadata_path="../data/saved_i3d/[model_id]/metadata/" # path to save metadata ([model_id] will be replaced)
            ):
        # Set path
        model_id = str(uuid.uuid4())[0:7] + "-i3d-" + self.mode
        model_id += model_id_suffix
        save_model_path = save_model_path.replace("[model_id]", model_id)
        save_tensorboard_path = save_tensorboard_path.replace("[model_id]", model_id)
        save_log_path = save_log_path.replace("[model_id]", model_id)
        save_metadata_path = save_metadata_path.replace("[model_id]", model_id)

        # Copy training, validation, and testing metadata
        check_and_create_dir(save_metadata_path)
        shutil.copy(p_metadata_train, save_metadata_path + "metadata_train.json")
        shutil.copy(p_metadata_validation, save_metadata_path + "metadata_validation.json")
        shutil.copy(p_metadata_test, save_metadata_path + "metadata_test.json")

        # Spawn processes
        n_gpu = torch.cuda.device_count()
        if self.parallel and n_gpu > 1:
            self.can_parallel = True
            self.log("Let's use " + str(n_gpu) + " GPUs!")
            mp.spawn(self.fit_worker, nprocs=n_gpu,
                    args=(n_gpu, p_model, save_model_path, save_tensorboard_path, save_log_path, self.p_frame,
                        p_metadata_train, p_metadata_validation, p_metadata_test), join=True)
        else:
            self.fit_worker(0, 1, p_model, save_model_path, save_tensorboard_path, save_log_path, self.p_frame,
                    p_metadata_train, p_metadata_validation, p_metadata_test) 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:38,代碼來源:i3d_learner.py

示例14: test

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def test(self,
            p_model=None # the path to load the pretrained or previously self-trained model
            ):
        # Check
        if p_model is None or not is_file_here(p_model):
            self.log("Need to provide a valid model path")
            return

        # Set path
        match = re.search(r'\b/[0-9a-fA-F]{7}-i3d-(rgb|flow)[^/]*/\b', p_model)
        model_id = match.group()[1:-1]
        if model_id is None:
            self.log("Cannot find a valid model id from the model path.")
            return
        p_root = p_model[:match.start()] + "/" + model_id + "/"
        p_metadata_test = p_root + "metadata/metadata_test.json" # metadata path (test)
        save_log_path = p_root + "log/test.log" # path to save log files
        save_viz_path = p_root + "viz/" # path to save visualizations

        # Spawn processes
        n_gpu = torch.cuda.device_count()
        if False:#self.parallel and n_gpu > 1:
            # TODO: multiple GPUs will cause an error when generating summary videos
            self.can_parallel = True
            self.log("Let's use " + str(n_gpu) + " GPUs!")
            mp.spawn(self.test_worker, nprocs=n_gpu,
                    args=(n_gpu, p_model, save_log_path, self.p_frame, save_viz_path, p_metadata_test), join=True)
        else:
            self.test_worker(0, 1, p_model, save_log_path, self.p_frame, save_viz_path, p_metadata_test) 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:31,代碼來源:i3d_learner.py

示例15: fit

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import spawn [as 別名]
def fit(self,
            p_model=None, # the path to load the pretrained or previously self-trained model
            model_id_suffix="", # the suffix appended after the model id
            p_metadata_train="../data/split/metadata_train_split_0_by_camera.json", # metadata path (train)
            p_metadata_validation="../data/split/metadata_validation_split_0_by_camera.json", # metadata path (validation)
            p_metadata_test="../data/split/metadata_test_split_0_by_camera.json", # metadata path (test)
            save_model_path="../data/saved_cnn/[model_id]/model/", # path to save the models ([model_id] will be replaced)
            save_tensorboard_path="../data/saved_cnn/[model_id]/run/", # path to save data ([model_id] will be replaced)
            save_log_path="../data/saved_cnn/[model_id]/log/train.log", # path to save log files ([model_id] will be replaced)
            save_metadata_path="../data/saved_cnn/[model_id]/metadata/" # path to save metadata ([model_id] will be replaced)
            ):
        # Set path
        model_id = str(uuid.uuid4())[0:7] + "-cnn-" + self.mode
        model_id += model_id_suffix
        save_model_path = save_model_path.replace("[model_id]", model_id)
        save_tensorboard_path = save_tensorboard_path.replace("[model_id]", model_id)
        save_log_path = save_log_path.replace("[model_id]", model_id)
        save_metadata_path = save_metadata_path.replace("[model_id]", model_id)

        # Copy training, validation, and testing metadata
        check_and_create_dir(save_metadata_path)
        shutil.copy(p_metadata_train, save_metadata_path + "metadata_train.json")
        shutil.copy(p_metadata_validation, save_metadata_path + "metadata_validation.json")
        shutil.copy(p_metadata_test, save_metadata_path + "metadata_test.json")

        # Spawn processes
        n_gpu = torch.cuda.device_count()
        if self.parallel and n_gpu > 1:
            self.can_parallel = True
            self.log("Let's use " + str(n_gpu) + " GPUs!")
            mp.spawn(self.fit_worker, nprocs=n_gpu,
                    args=(n_gpu, p_model, save_model_path, save_tensorboard_path, save_log_path, self.p_frame,
                        p_metadata_train, p_metadata_validation, p_metadata_test), join=True)
        else:
            self.fit_worker(0, 1, p_model, save_model_path, save_tensorboard_path, save_log_path, self.p_frame,
                    p_metadata_train, p_metadata_validation, p_metadata_test) 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:38,代碼來源:cnn_learner.py


注:本文中的torch.multiprocessing.spawn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。