當前位置: 首頁>>代碼示例>>Python>>正文


Python multiprocessing.Process方法代碼示例

本文整理匯總了Python中torch.multiprocessing.Process方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.Process方法的具體用法?Python multiprocessing.Process怎麽用?Python multiprocessing.Process使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.multiprocessing的用法示例。


在下文中一共展示了multiprocessing.Process方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: read_spec_and_run

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def read_spec_and_run(spec_file, spec_name, lab_mode):
    '''Read a spec and run it in lab mode'''
    logger.info(f'Running lab spec_file:{spec_file} spec_name:{spec_name} in mode:{lab_mode}')
    if lab_mode in TRAIN_MODES:
        spec = spec_util.get(spec_file, spec_name)
    else:  # eval mode
        if '@' in lab_mode:
            lab_mode, prename = lab_mode.split('@')
            spec = spec_util.get_eval_spec(spec_file, spec_name, prename)
        else:
            spec = spec_util.get(spec_file, spec_name)

    if 'spec_params' not in spec:
        run_spec(spec, lab_mode)
    else:  # spec is parametrized; run them in parallel
        param_specs = spec_util.get_param_specs(spec)
        num_pro = spec['meta']['param_spec_process']
        # can't use Pool since it cannot spawn nested Process, which is needed for VecEnv and parallel sessions. So these will run and wait by chunks
        workers = [mp.Process(target=run_spec, args=(spec, lab_mode)) for spec in param_specs]
        for chunk_w in ps.chunk(workers, num_pro):
            for w in chunk_w:
                w.start()
            for w in chunk_w:
                w.join() 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:26,代碼來源:run.py

示例2: fast_train_mp

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def fast_train_mp(self):
        """ multi-cpu-core or mix cpu & multi-gpu """
        self.init_device_emb()
        self.emb_model.share_memory()

        start_all = time.time()
        ps = []

        for i in range(len(self.args.gpus)):
            p = mp.Process(target=self.fast_train_sp, args=(self.args.gpus[i],))
            ps.append(p)
            p.start()

        for p in ps:
            p.join()
        
        print("Used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_txt:
            self.emb_model.save_embedding_txt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:23,代碼來源:deepwalk.py

示例3: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def __init__(self, config):
        mp.Process.__init__(self)
        self.config = config
        self.__pipe, self.__worker_pipe = mp.Pipe()

        self._state = None
        self._task = None
        self._network = None
        self._total_steps = 0
        self.__cache_len = 2

        if not config.async_actor:
            self.start = lambda: None
            self.step = self._sample
            self.close = lambda: None
            self._set_up()
            self._task = config.task_fn() 
開發者ID:ShangtongZhang,項目名稱:DeepRL,代碼行數:19,代碼來源:BaseAgent.py

示例4: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def __init__(self, master, process_id=0):
        super(AgentSingleProcess, self).__init__(name = "Process-%d" % process_id)
        # NOTE: self.master.* refers to parameters shared across all processes
        # NOTE: self.*        refers to process-specific properties
        # NOTE: we are not copying self.master.* to self.* to keep the code clean

        self.master = master
        self.process_id = process_id

        # env
        self.env = self.master.env_prototype(self.master.env_params, self.process_id)
        # model
        self.model = self.master.model_prototype(self.master.model_params)
        self._sync_local_with_global()

        # experience
        self._reset_experience() 
開發者ID:jingweiz,項目名稱:pytorch-rl,代碼行數:19,代碼來源:agent_single_process.py

示例5: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def __init__(self,
                 base_iterator: DataIterator,
                 num_workers: int = 1,
                 output_queue_size: int = 1000) -> None:
        # pylint: disable=protected-access
        super().__init__()
        self.num_workers = num_workers
        self.batch_size = base_iterator._batch_size
        self.output_queue_size = output_queue_size

        # These two options make the iterator stateful, which means it can't be shared
        # across multiple processes.
        if base_iterator._cache_instances:
            raise ConfigurationError("cannot use Multiprocess iterator with cache_instances")
        if base_iterator._instances_per_epoch:
            raise ConfigurationError("cannot use instances_per_epoch with Multiprocess iterator")

        self.iterator = base_iterator

        self.processes: List[Process] = []
        self.queuer: Optional[Process] = None 
開發者ID:jcyk,項目名稱:gtos,代碼行數:23,代碼來源:multiprocess_iterator.py

示例6: test_step

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def test_step(self):

        def _run(rank, world_size):
            model = nn.Linear(10, 1)
            optimizer = DistributedAdamW(
                model.parameters())

            optimizer.zero_grad()
            loss = model(torch.ones(10).float())
            loss.backward()
            optimizer.step()

        processes = []
        world_size = 4
        for rank in range(world_size):
            p = Process(target=init_processes,
                        args=(rank,
                              world_size,
                              _run))
            p.start()
            processes.append(p)
        for p in processes:
            p.join() 
開發者ID:DeepX-inc,項目名稱:machina,代碼行數:25,代碼來源:distributed_adamw_test.py

示例7: test_step

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def test_step(self):

        def _run(rank, world_size):
            model = nn.Linear(10, 1)
            optimizer = DistributedSGD(
                model.parameters())

            optimizer.zero_grad()
            loss = model(torch.ones(10).float())
            loss.backward()
            optimizer.step()

        processes = []
        world_size = 4
        for rank in range(world_size):
            p = Process(target=init_processes,
                        args=(rank,
                              world_size,
                              _run))
            p.start()
            processes.append(p)
        for p in processes:
            p.join() 
開發者ID:DeepX-inc,項目名稱:machina,代碼行數:25,代碼來源:distributed_sgd_test.py

示例8: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def __init__(self, rank):
    docker_client = docker.from_env()
    agent_port, partner_port = 10000 + rank, 20000 + rank
    clients = [('127.0.0.1', agent_port), ('127.0.0.1', partner_port)]
    self.agent_type = GlobalVar()

    # Assume Minecraft launched if port has listener, launch otherwise
    if not _port_has_listener(agent_port):
      self._launch_malmo(docker_client, agent_port)
    print('Malmo running on port ' + str(agent_port))
    if not _port_has_listener(partner_port):
      self._launch_malmo(docker_client, partner_port)
    print('Malmo running on port ' + str(partner_port))

    # Set up partner agent env in separate process
    p = mp.Process(target=self._run_partner, args=(clients, ))
    p.daemon = True
    p.start()
    time.sleep(3)

    # Set up agent env
    self.env = PigChaseEnvironment(clients, PigChaseTopDownStateBuilder(gray=False), role=1, randomize_positions=True) 
開發者ID:Kaixhin,項目名稱:malmo-challenge,代碼行數:24,代碼來源:pc_environment.py

示例9: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def __init__(self, n_train_processes):
        self.nenvs = n_train_processes
        self.waiting = False
        self.closed = False
        self.workers = list()

        master_ends, worker_ends = zip(*[mp.Pipe() for _ in range(self.nenvs)])
        self.master_ends, self.worker_ends = master_ends, worker_ends

        for worker_id, (master_end, worker_end) in enumerate(zip(master_ends, worker_ends)):
            p = mp.Process(target=worker,
                           args=(worker_id, master_end, worker_end))
            p.daemon = True
            p.start()
            self.workers.append(p)

        # Forbid master to use the worker end for messaging
        for worker_end in worker_ends:
            worker_end.close() 
開發者ID:seungeunrho,項目名稱:minimalRL,代碼行數:21,代碼來源:a2c.py

示例10: start

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def start(self):
        # start a thread to read frames from the file video stream
        if self.format == 'ssd':
            if opt.sp:
                p = Thread(target=self.getitem_ssd, args=())
            else:
                p = mp.Process(target=self.getitem_ssd, args=())
        elif self.format == 'yolo':
            if opt.sp:
                p = Thread(target=self.getitem_yolo, args=())
            else:
                p = mp.Process(target=self.getitem_yolo, args=())
        else:
            raise NotImplementedError
        p.daemon = True
        p.start()
        return self 
開發者ID:zh-plus,項目名稱:video-to-pose3D,代碼行數:19,代碼來源:dataloader.py

示例11: parallelize_sessions

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def parallelize_sessions(self, global_nets=None):
        mp_dict = mp.Manager().dict()
        # spec_util.tick(self.spec, 'session')
        # mp_run_session(deepcopy(self.spec), global_nets, mp_dict)
        workers = []
        for _s in range(self.spec['meta']['max_session']):
            spec_util.tick(self.spec, 'session')
            w = mp.Process(target=mp_run_session, args=(deepcopy(self.spec), global_nets, mp_dict))
            w.start()
            workers.append(w)
        for w in workers:
            w.join()
        session_metrics_list = [mp_dict[idx] for idx in sorted(mp_dict.keys())]
        return session_metrics_list 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:16,代碼來源:control.py

示例12: start

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def start(self, runtime_args):
        self.processes = []
        for rank in range(self.world_size):
            self.processes.append(Process(target=self.init_process, args=(rank, self.fn, self.args, runtime_args)))
            self.processes[-1].start() 
開發者ID:salesforce,項目名稱:decaNLP,代碼行數:7,代碼來源:multiprocess.py

示例13: init_parallel_jobs

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def init_parallel_jobs(system_config, dbs, queue, fn, data_aug):
    tasks = [Process(target=prefetch_data, args=(system_config, db, queue, fn, data_aug)) for db in dbs]
    for task in tasks:
        task.daemon = True
        task.start()
    return tasks 
開發者ID:DataXujing,項目名稱:CornerNet-Lite-Pytorch,代碼行數:8,代碼來源:trainmyData.py

示例14: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def main(args, devices):
    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    test_mask = data.test_mask
    features = th.Tensor(data.features)
    in_feats = features.shape[1]
    labels = th.LongTensor(data.labels)
    n_classes = data.num_labels
    # Construct graph
    g = dgl.graph(data.graph.all_edges())
    g.ndata['features'] = features
    # Pack data
    data = train_mask, val_mask, test_mask, in_feats, labels, n_classes, g

    n_gpus = len(devices)
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], data)
    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
            p = mp.Process(target=thread_wrapped_func(run),
                           args=(proc_id, n_gpus, args, devices, data))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()

    run(args, device, data) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:34,代碼來源:train_sampling_unsupervised.py

示例15: fast_train_mp

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Process [as 別名]
def fast_train_mp(self):
        """ multi-cpu-core or mix cpu & multi-gpu """
        self.init_device_emb()
        self.emb_model.share_memory()

        if self.args.count_params:
            sum_up_params(self.emb_model)

        start_all = time.time()
        ps = []

        for i in range(len(self.args.gpus)):
            p = mp.Process(target=self.fast_train_sp, args=(self.args.gpus[i],))
            ps.append(p)
            p.start()

        for p in ps:
            p.join()
        
        print("Used time: %.2fs" % (time.time()-start_all))
        if self.args.save_in_txt:
            self.emb_model.save_embedding_txt(self.dataset, self.args.output_emb_file)
        elif self.args.save_in_pt:
            self.emb_model.save_embedding_pt(self.dataset, self.args.output_emb_file)
        else:
            self.emb_model.save_embedding(self.dataset, self.args.output_emb_file) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:28,代碼來源:deepwalk.py


注:本文中的torch.multiprocessing.Process方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。