當前位置: 首頁>>代碼示例>>Python>>正文


Python multiprocessing.Pipe方法代碼示例

本文整理匯總了Python中torch.multiprocessing.Pipe方法的典型用法代碼示例。如果您正苦於以下問題:Python multiprocessing.Pipe方法的具體用法?Python multiprocessing.Pipe怎麽用?Python multiprocessing.Pipe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.multiprocessing的用法示例。


在下文中一共展示了multiprocessing.Pipe方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(self, config):
        mp.Process.__init__(self)
        self.config = config
        self.__pipe, self.__worker_pipe = mp.Pipe()

        self._state = None
        self._task = None
        self._network = None
        self._total_steps = 0
        self.__cache_len = 2

        if not config.async_actor:
            self.start = lambda: None
            self.step = self._sample
            self.close = lambda: None
            self._set_up()
            self._task = config.task_fn() 
開發者ID:ShangtongZhang,項目名稱:DeepRL,代碼行數:19,代碼來源:BaseAgent.py

示例2: _inference

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def _inference(self, cand):
        # bn_statistic
        parent_conn, child_conn = mp.Pipe()
        args = dict({"local_rank": 0, "distributed": False})
        mp.spawn(
            bn_statistic, nprocs=self.ngpus_per_node,
            args=(self.ngpus_per_node, cfg, args, cand, child_conn))
        salt = parent_conn.recv()

        # fitness
        parent_conn, child_conn = mp.Pipe()
        args = dict({"local_rank": 0, "distributed": False})
        mp.spawn(
            fitness, nprocs=self.ngpus_per_node,
            args=(self.ngpus_per_node, cfg, args, cand, salt, child_conn))

        if os.path.isfile(os.path.join(cfg.OUTPUT_DIR, salt+".pth")):
            os.remove(os.path.join(cfg.OUTPUT_DIR, salt+".pth"))

        return parent_conn.recv() 
開發者ID:megvii-model,項目名稱:DetNAS,代碼行數:22,代碼來源:test_server.py

示例3: request

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def request(decode_queue, resolution, index, fps=24.0, duration=4.0):
    res2quality = {240: 0, 360: 1, 480: 2, 720: 3, 1080: 4}
    video_dir = os.path.join(opt.data_dir, '{}p'.format(resolution))

    start_time = time.time()
    video_info = util.videoInfo(fps, duration, res2quality[resolution])
    output_output, output_input = mp.Pipe(duplex=False)
    decode_queue.put((os.path.join(video_dir, 'segment_init.mp4'), os.path.join(video_dir, 'segment_{}.m4s'.format(index)), output_input, video_info))

    while(1):
        input = output_output.recv()
        if input[0] == 'output':
            end_time = time.time()
            print('overall [elapsed], resolution [{}p] : {}sec'.format(resolution, end_time - start_time))
            break
        else:
            print('request: Invalid input')
            break 
開發者ID:kaist-ina,項目名稱:NAS_public,代碼行數:20,代碼來源:process.py

示例4: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(self, n_train_processes):
        self.nenvs = n_train_processes
        self.waiting = False
        self.closed = False
        self.workers = list()

        master_ends, worker_ends = zip(*[mp.Pipe() for _ in range(self.nenvs)])
        self.master_ends, self.worker_ends = master_ends, worker_ends

        for worker_id, (master_end, worker_end) in enumerate(zip(master_ends, worker_ends)):
            p = mp.Process(target=worker,
                           args=(worker_id, master_end, worker_end))
            p.daemon = True
            p.start()
            self.workers.append(p)

        # Forbid master to use the worker end for messaging
        for worker_end in worker_ends:
            worker_end.close() 
開發者ID:seungeunrho,項目名稱:minimalRL,代碼行數:21,代碼來源:a2c.py

示例5: init_vae_training_subprocess

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def init_vae_training_subprocess(self):
        assert isinstance(self.replay_buffer, SharedObsDictRelabelingBuffer)

        self._vae_conn_pipe, process_pipe = Pipe()
        self._vae_training_process = Process(
            target=subprocess_train_vae_loop,
            args=(
                process_pipe,
                self.vae,
                self.vae.state_dict(),
                self.replay_buffer,
                self.replay_buffer.get_mp_info(),
                ptu.device,
            )
        )
        self._vae_training_process.start()
        self._vae_conn_pipe.send(self.vae_trainer) 
開發者ID:vitchyr,項目名稱:rlkit,代碼行數:19,代碼來源:online_vae_algorithm.py

示例6: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(self, memory_size, batch_size, replay_type=Config.DEFAULT_REPLAY):
        mp.Process.__init__(self)
        self.pipe, self.worker_pipe = mp.Pipe()
        self.memory_size = memory_size
        self.batch_size = batch_size
        self.cache_len = 2
        self.replay_type = replay_type
        self.start() 
開發者ID:ShangtongZhang,項目名稱:DeepRL,代碼行數:10,代碼來源:replay.py

示例7: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(self, args, trainer_maker):
        self.comms = []
        self.trainer = trainer_maker()
        # itself will do the same job as workers
        self.nworkers = args.nprocesses - 1
        for i in range(self.nworkers):
            comm, comm_remote = mp.Pipe()
            self.comms.append(comm)
            worker = MultiProcessWorker(i, trainer_maker, comm_remote, seed=args.seed)
            worker.start()
        self.grads = None
        self.worker_grads = None
        self.is_random = args.random 
開發者ID:IC3Net,項目名稱:IC3Net,代碼行數:15,代碼來源:multi_processing.py

示例8: main

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def main():
    args = parse_args()

    mp.set_start_method('spawn')  # Using spawn is decided.
    _logger = log.get_logger(__name__, args)
    _logger.info(print_args(args))

    loaders = []
    file_list = os.listdir(args.train_file)
    random.shuffle(file_list)
    for i in range(args.worker):
        loader = data_loader.DataLoader(
            args.train_file,
            args.dict_file,
            separate_conj_stmt=args.direction,
            binary=args.binary,
            part_no=i,
            part_total=args.worker,
            file_list=file_list,
            norename=args.norename,
            filter_abelian=args.fabelian,
            compatible=args.compatible)
        loaders.append(loader)
        loader.start_reader()

    net, mid_net, loss_fn = create_models(args, loaders[0], allow_resume=True)
    # Use fake modules to replace the real ones
    net = FakeModule(net)
    if mid_net is not None:
        mid_net = FakeModule(mid_net)
    for i in range(len(loss_fn)):
        loss_fn[i] = FakeModule(loss_fn[i])

    opt = get_opt(net, mid_net, loss_fn, args)

    inqueues = []
    outqueues = []

    plist = []
    for i in range(args.worker):
        recv_p, send_p = Pipe(False)
        recv_p2, send_p2 = Pipe(False)
        inqueues.append(send_p)
        outqueues.append(recv_p2)
        plist.append(
            Process(target=worker, args=(recv_p, send_p2, loaders[i], args, i)))
        plist[-1].start()

    _logger.warning('Training begins')
    train(inqueues, outqueues, net, mid_net, loss_fn, opt, loaders, args, _logger)
    loader.destruct()
    for p in plist:
        p.terminate()
    for loader in loaders:
        loader.destruct()
    _logger.warning('Training ends') 
開發者ID:princeton-vl,項目名稱:FormulaNet,代碼行數:58,代碼來源:batch_train.py

示例9: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(
            self,
            env,
            policy,
            exploration_policy,
            max_path_length,
            train_rollout_function,
            eval_rollout_function,
            num_workers=2,
    ):
        Serializable.quick_init(self, locals())
        super().__init__(env)
        self.num_workers = num_workers
        # Let self.worker_limits[True] be the max number of workers for training
        # and self.worker_limits[False] be the max number of workers for eval.
        self.worker_limits = {
            True: math.ceil(self.num_workers / 2),
            False: math.ceil(self.num_workers / 2),
        }

        self.parent_pipes = []
        self.child_pipes = []

        for _ in range(num_workers):
            parent_conn, child_conn = Pipe()
            self.parent_pipes.append(parent_conn)
            self.child_pipes.append(child_conn)

        self._workers = [
            Process(
                target=RemoteRolloutEnv._worker_loop,
                args=(
                    self.child_pipes[i],
                    env,
                    policy,
                    exploration_policy,
                    max_path_length,
                    cloudpickle.dumps(train_rollout_function),
                    cloudpickle.dumps(eval_rollout_function),
                )
            )
        for i in range(num_workers)]

        for worker in self._workers:
            worker.start()

        self.free_pipes = set(self.parent_pipes)
        # self.pipe_info[pipe] stores (epoch, train_type)
        self.pipe_info = {}
        # Let self.promise_list[True] be the promises for training
        # and self.promise_list[False] be the promises for eval.
        self.rollout_promise_list = {
            True: [],
            False: [],
        } 
開發者ID:snasiriany,項目名稱:leap,代碼行數:57,代碼來源:remote.py

示例10: run_parameter_sweep

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def run_parameter_sweep(parameters,data,args,Beta):
    output = []
    num_processes = torch.cuda.device_count()
    batches = int(len(parameters) / num_processes)
    idx = 0
    objectives = []
    nsigs = []
    times = []
    while idx <= len(parameters)-num_processes:
        print(idx)
        pipe_list = []
        processes = []
        for rank in range(num_processes):
            recv_end, send_end = mp.Pipe(False)
            p = mp.Process(target=run_method_engine, args=(data, parameters.iloc[idx+rank]['a'], parameters.iloc[idx+rank]['phi'], parameters.iloc[idx+rank]['b'], Beta, 
                                                   args.prior_on_W, args.prior_on_H, parameters.iloc[idx+rank]['K0'], args.tolerance,args.max_iter, send_end, rank,))
            pipe_list.append(recv_end)
            processes.append(p)
            p.start()

        result_list = [x.recv() for x in pipe_list]
        for p in processes:
            p.join()
        nsig = [write_output(x[0],x[1],data.channel_names,data.sample_names,args.output_dir,
                      parameters['label'][idx+i]) for i,x in enumerate(result_list)]
        [nsigs.append(ns) for i,ns in enumerate(nsig)]
        [times.append(time[3]) for i,time in enumerate(result_list)]
        [objectives.append(obj[2]) for i,obj in enumerate(result_list)]
        idx += num_processes
        
    if idx < len(parameters):
        for i in range(len(parameters)-idx):
            idx+=i
            W,H,cost,time = run_method_engine(data, parameters.iloc[idx]['a'], parameters.iloc[idx]['phi'], parameters.iloc[idx]['b'], Beta, 
                                                   args.prior_on_W, args.prior_on_H, parameters.iloc[idx]['K0'], args.tolerance,args.max_iter)
            nsig = write_output(W,H,data.channel_names,data.sample_names,args.output_dir,
                      parameters['label'][idx])
            times.append(time)
            nsigs.append(nsig)
            objectives.append(cost)
    parameters['nsigs'] = nsigs
    parameters['objective'] = objectives
    parameters['times'] = times
    parameters.to_csv(args.output_dir + '/parameters_with_results.txt',sep='\t',index=None) 
開發者ID:broadinstitute,項目名稱:SignatureAnalyzer-GPU,代碼行數:46,代碼來源:SignatureAnalyzer-GPU.py

示例11: __init__

# 需要導入模塊: from torch import multiprocessing [as 別名]
# 或者: from torch.multiprocessing import Pipe [as 別名]
def __init__(self, env_fns, engine):
        super(SubProcEnvManager, self).__init__(env_fns, engine)
        self.waiting = False
        self.closed = False
        self.processes = []

        self._zmq_context = zmq.Context()
        self._zmq_ports = []
        self._zmq_sockets = []

        # make a temporary env to get stuff
        dummy = env_fns[0]()
        self._observation_space = dummy.observation_space
        self._action_space = dummy.action_space
        self._cpu_preprocessor = dummy.cpu_preprocessor
        self._gpu_preprocessor = dummy.gpu_preprocessor
        dummy.close()

        # iterate envs to get torch shared memory through pipe then close it
        shared_memories = []

        for w_ind in range(self.nb_env):
            pipe, w_pipe = mp.Pipe()
            socket, port = zmq_robust_bind_socket(self._zmq_context)

            process = mp.Process(
                target=worker,
                args=(w_pipe, pipe, port, CloudpickleWrapper(env_fns[w_ind])),
            )
            process.daemon = True
            process.start()
            self.processes.append(process)

            self._zmq_sockets.append(socket)

            pipe.send(("get_shared_memory", None))
            shared_memories.append(pipe.recv())

            # switch to zmq socket and close pipes
            pipe.send(("switch_zmq", None))
            pipe.close()
            w_pipe.close()

        self.shared_memories = listd_to_dlist(shared_memories) 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:46,代碼來源:subproc_env_manager.py


注:本文中的torch.multiprocessing.Pipe方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。