當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.long方法代碼示例

本文整理匯總了Python中torch.long方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.long方法的具體用法?Python torch.long怎麽用?Python torch.long使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.long方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def train(self, dataset):
        self.model.train()
        self.optimizer.zero_grad()
        total_loss = 0.0
        indices = torch.randperm(len(dataset), dtype=torch.long, device='cpu')
        for idx in tqdm(range(len(dataset)), desc='Training epoch ' + str(self.epoch + 1) + ''):
            ltree, linput, rtree, rinput, label = dataset[indices[idx]]
            target = utils.map_label_to_target(label, dataset.num_classes)
            linput, rinput = linput.to(self.device), rinput.to(self.device)
            target = target.to(self.device)
            output = self.model(ltree, linput, rtree, rinput)
            loss = self.criterion(output, target)
            total_loss += loss.item()
            loss.backward()
            if idx % self.args.batchsize == 0 and idx > 0:
                self.optimizer.step()
                self.optimizer.zero_grad()
        self.epoch += 1
        return total_loss / len(dataset)

    # helper function for testing 
開發者ID:dasguptar,項目名稱:treelstm.pytorch,代碼行數:23,代碼來源:trainer.py

示例2: random_choice

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def random_choice(self, gallery, num):
        """Random select some elements from the gallery.

        If `gallery` is a Tensor, the returned indices will be a Tensor;
        If `gallery` is a ndarray or list, the returned indices will be a
        ndarray.

        Args:
            gallery (Tensor | ndarray | list): indices pool.
            num (int): expected sample num.

        Returns:
            Tensor or ndarray: sampled indices.
        """
        assert len(gallery) >= num

        is_tensor = isinstance(gallery, torch.Tensor)
        if not is_tensor:
            gallery = torch.tensor(
                gallery, dtype=torch.long, device=torch.cuda.current_device())
        perm = torch.randperm(gallery.numel(), device=gallery.device)[:num]
        rand_inds = gallery[perm]
        if not is_tensor:
            rand_inds = rand_inds.cpu().numpy()
        return rand_inds 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:random_sampler.py

示例3: random_choice

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def random_choice(gallery, num):
        """Randomly select some elements from the gallery.

        If `gallery` is a Tensor, the returned indices will be a Tensor;
        If `gallery` is a ndarray or list, the returned indices will be a
        ndarray.

        Args:
            gallery (Tensor | ndarray | list): indices pool.
            num (int): expected sample num.

        Returns:
            Tensor or ndarray: sampled indices.
        """
        assert len(gallery) >= num

        is_tensor = isinstance(gallery, torch.Tensor)
        if not is_tensor:
            gallery = torch.tensor(
                gallery, dtype=torch.long, device=torch.cuda.current_device())
        perm = torch.randperm(gallery.numel(), device=gallery.device)[:num]
        rand_inds = gallery[perm]
        if not is_tensor:
            rand_inds = rand_inds.cpu().numpy()
        return rand_inds 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:score_hlr_sampler.py

示例4: select_action

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def select_action(self, state):
        """
        The action selection function, it either uses the model to choose an action or samples one uniformly.
        :param state: current state of the model
        :return:
        """
        if self.cuda:
            state = state.cuda()
        sample = random.random()
        eps_threshold = self.config.eps_start + (self.config.eps_start - self.config.eps_end) * math.exp(
            -1. * self.current_iteration / self.config.eps_decay)
        self.current_iteration += 1
        if sample > eps_threshold:
            with torch.no_grad():
                return self.policy_model(state).max(1)[1].view(1, 1)
        else:
            return torch.tensor([[random.randrange(2)]], device=self.device, dtype=torch.long) 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:19,代碼來源:dqn.py

示例5: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def __init__(self, thresh=1e-8, projDim=8192, input_dim=512):
         super(CBP, self).__init__()
         self.thresh = thresh
         self.projDim = projDim
         self.input_dim = input_dim
         self.output_dim = projDim
         torch.manual_seed(1)
         self.h_ = [
                 torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long),
                 torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long)
         ]
         self.weights_ = [
             (2 * torch.randint(0, 2, (self.input_dim,)) - 1).float(),
             (2 * torch.randint(0, 2, (self.input_dim,)) - 1).float()
         ]

         indices1 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1),
                               self.h_[0].reshape(1, -1)), dim=0)
         indices2 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1),
                               self.h_[1].reshape(1, -1)), dim=0)

         self.sparseM = [
             torch.sparse.FloatTensor(indices1, self.weights_[0], torch.Size([self.input_dim, self.output_dim])).to_dense(),
             torch.sparse.FloatTensor(indices2, self.weights_[1], torch.Size([self.input_dim, self.output_dim])).to_dense(),
         ] 
開發者ID:jiangtaoxie,項目名稱:fast-MPN-COV,代碼行數:27,代碼來源:CBP.py

示例6: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
        image_id = self._image_ids[index]
        annotation = self._image_id_to_annotation_dict[image_id]

        bboxes = [obj.bbox.tolist() for obj in annotation.objects]
        labels = [COCO2017Animal.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects]  # mapping from original `COCO2017` dataset

        bboxes = torch.tensor(bboxes, dtype=torch.float)
        labels = torch.tensor(labels, dtype=torch.long)

        image = Image.open(annotation.filename).convert('RGB')  # for some grayscale images

        # random flip on only training mode
        if self._mode == COCO2017Animal.Mode.TRAIN and random.random() > 0.5:
            image = ImageOps.mirror(image)
            bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]]  # index 0 and 2 represent `left` and `right` respectively

        image, scale = COCO2017Animal.preprocess(image, self._image_min_side, self._image_max_side)
        scale = torch.tensor(scale, dtype=torch.float)
        bboxes *= scale

        return image_id, image, scale, bboxes, labels 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:24,代碼來源:coco2017_animal.py

示例7: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
        image_id = self._image_ids[index]
        annotation = self._image_id_to_annotation_dict[image_id]

        bboxes = [obj.bbox.tolist() for obj in annotation.objects]
        labels = [COCO2017Person.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects]  # mapping from original `COCO2017` dataset

        bboxes = torch.tensor(bboxes, dtype=torch.float)
        labels = torch.tensor(labels, dtype=torch.long)

        image = Image.open(annotation.filename).convert('RGB')  # for some grayscale images

        # random flip on only training mode
        if self._mode == COCO2017Person.Mode.TRAIN and random.random() > 0.5:
            image = ImageOps.mirror(image)
            bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]]  # index 0 and 2 represent `left` and `right` respectively

        image, scale = COCO2017Person.preprocess(image, self._image_min_side, self._image_max_side)
        scale = torch.tensor(scale, dtype=torch.float)
        bboxes *= scale

        return image_id, image, scale, bboxes, labels 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:24,代碼來源:coco2017_person.py

示例8: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
        image_id = self._image_ids[index]
        annotation = self._image_id_to_annotation_dict[image_id]

        bboxes = [obj.bbox.tolist() for obj in annotation.objects]
        labels = [obj.label for obj in annotation.objects]

        bboxes = torch.tensor(bboxes, dtype=torch.float)
        labels = torch.tensor(labels, dtype=torch.long)

        image = Image.open(annotation.filename).convert('RGB')  # for some grayscale images

        # random flip on only training mode
        if self._mode == COCO2017.Mode.TRAIN and random.random() > 0.5:
            image = ImageOps.mirror(image)
            bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]]  # index 0 and 2 represent `left` and `right` respectively

        image, scale = COCO2017.preprocess(image, self._image_min_side, self._image_max_side)
        scale = torch.tensor(scale, dtype=torch.float)
        bboxes *= scale

        return image_id, image, scale, bboxes, labels 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:24,代碼來源:coco2017.py

示例9: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
        image_id = self._image_ids[index]
        annotation = self._image_id_to_annotation_dict[image_id]

        bboxes = [obj.bbox.tolist() for obj in annotation.objects]
        labels = [COCO2017Car.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects]  # mapping from original `COCO2017` dataset

        bboxes = torch.tensor(bboxes, dtype=torch.float)
        labels = torch.tensor(labels, dtype=torch.long)

        image = Image.open(annotation.filename).convert('RGB')  # for some grayscale images

        # random flip on only training mode
        if self._mode == COCO2017Car.Mode.TRAIN and random.random() > 0.5:
            image = ImageOps.mirror(image)
            bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]]  # index 0 and 2 represent `left` and `right` respectively

        image, scale = COCO2017Car.preprocess(image, self._image_min_side, self._image_max_side)
        scale = torch.tensor(scale, dtype=torch.float)
        bboxes *= scale

        return image_id, image, scale, bboxes, labels 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:24,代碼來源:coco2017_car.py

示例10: get_ts_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def get_ts_loss(self, temporal_scores, ts_labels,  answer_indices):
        """
        Args:
            temporal_scores: (N, 5, Li, 2)
            ts_labels: dict(st=(N, ), ed=(N, ))
            answer_indices: (N, )

        Returns:

        """
        bsz = len(answer_indices)
        # compute loss
        ca_temporal_scores_st_ed = \
            temporal_scores[torch.arange(bsz, dtype=torch.long), answer_indices]  # (N, Li, 2)
        loss_st = self.temporal_criterion(ca_temporal_scores_st_ed[:, :, 0], ts_labels["st"])
        loss_ed = self.temporal_criterion(ca_temporal_scores_st_ed[:, :, 1], ts_labels["ed"])
        return (loss_st + loss_ed) / 2. 
開發者ID:jayleicn,項目名稱:TVQAplus,代碼行數:19,代碼來源:stage.py

示例11: get_train_data

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def get_train_data(self, batch_size=8):
        samples = random.sample(self.train_dict.keys(), batch_size)

        texts = [self.train_dict[k][0] for k in samples]
        labels = [self.train_dict[k][1] for k in samples]

        robust_padding(texts, labels)

        maxlen = max(len(t) for t in texts)

        text_tensor = torch.zeros(maxlen, batch_size, dtype=torch.long)
        for i, text in enumerate(texts):
            text_tensor[:, i] = torch.LongTensor([VOCAB.find(c) for c in text])

        truth_tensor = torch.zeros(maxlen, batch_size, dtype=torch.long)
        for i, label in enumerate(labels):
            truth_tensor[:, i] = torch.LongTensor(label)

        return text_tensor.to(self.device), truth_tensor.to(self.device) 
開發者ID:zzzDavid,項目名稱:ICDAR-2019-SROIE,代碼行數:21,代碼來源:my_data.py

示例12: get_val_data

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def get_val_data(self, batch_size=8, device="cpu"):
        keys = random.sample(self.val_dict.keys(), batch_size)

        texts = [self.val_dict[k][0] for k in keys]
        labels = [self.val_dict[k][1] for k in keys]

        maxlen = max(len(s) for s in texts)
        texts = [s.ljust(maxlen, " ") for s in texts]
        labels = [
            numpy.pad(a, (0, maxlen - len(a)), mode="constant", constant_values=0)
            for a in labels
        ]

        text_tensor = torch.zeros(maxlen, batch_size, dtype=torch.long)
        for i, text in enumerate(texts):
            text_tensor[:, i] = torch.LongTensor([VOCAB.find(c) for c in text])

        truth_tensor = torch.zeros(maxlen, batch_size, dtype=torch.long)
        for i, label in enumerate(labels):
            truth_tensor[:, i] = torch.LongTensor(label)

        return keys, text_tensor.to(self.device), truth_tensor.to(self.device) 
開發者ID:zzzDavid,項目名稱:ICDAR-2019-SROIE,代碼行數:24,代碼來源:my_data.py

示例13: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def forward(self, batch_token_ids):
        batch_size, sent_len = batch_token_ids.size()
        device = batch_token_ids.device

        batch_pos_ids = torch.arange(
            sent_len, dtype=torch.long, device=device, requires_grad=False
        )
        batch_pos_ids = batch_pos_ids.unsqueeze(0).expand_as(batch_token_ids)

        batch_token_emb = self.token_embedding(batch_token_ids)
        batch_pos_emb = self.pos_embedding(batch_pos_ids)

        batch_token_emb = batch_token_emb + batch_pos_emb

        batch_token_out = self.layer_norm(batch_token_emb)
        batch_token_out = self.dropout(batch_token_out)

        return batch_token_out 
開發者ID:dolphin-zs,項目名稱:Doc2EDAG,代碼行數:20,代碼來源:ner_model.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def forward(self, batch_elem_emb, sent_pos_ids=None):
        if sent_pos_ids is None:
            num_elem = batch_elem_emb.size(-2)
            sent_pos_ids = torch.arange(
                num_elem, dtype=torch.long, device=batch_elem_emb.device, requires_grad=False
            )
        elif not isinstance(sent_pos_ids, torch.Tensor):
            sent_pos_ids = torch.tensor(
                sent_pos_ids, dtype=torch.long, device=batch_elem_emb.device, requires_grad=False
            )

        batch_pos_emb = self.embedding(sent_pos_ids)
        out = batch_elem_emb + batch_pos_emb
        out = self.dropout(self.layer_norm(out))

        return out 
開發者ID:dolphin-zs,項目名稱:Doc2EDAG,代碼行數:18,代碼來源:dee_model.py

示例15: get_label_embedding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import long [as 別名]
def get_label_embedding(labels, max_seq_length, tokenizer, device):
    features = []
    for label in labels:
        label_tokens = ["[CLS]"] + tokenizer.tokenize(label) + ["[SEP]"]
        label_token_ids = tokenizer.convert_tokens_to_ids(label_tokens)
        label_len = len(label_token_ids)

        label_padding = [0] * (max_seq_length - len(label_token_ids))
        label_token_ids += label_padding
        assert len(label_token_ids) == max_seq_length

        features.append((label_token_ids, label_len))

    all_label_token_ids = torch.tensor([f[0] for f in features], dtype=torch.long).to(device)
    all_label_len = torch.tensor([f[1] for f in features], dtype=torch.long).to(device)

    return all_label_token_ids, all_label_len 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:19,代碼來源:sumbt.py


注:本文中的torch.long方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。