當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.ifft方法代碼示例

本文整理匯總了Python中torch.ifft方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.ifft方法的具體用法?Python torch.ifft怎麽用?Python torch.ifft使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.ifft方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ifft2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def ifft2(data):
    """
    Apply centered 2-dimensional Inverse Fast Fourier Transform.

    Args:
        data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions
            -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are
            assumed to be batch dimensions.

    Returns:
        torch.Tensor: The IFFT of the input.
    """
    assert data.size(-1) == 2
    data = ifftshift(data, dim=(-3, -2))
    data = torch.ifft(data, 2, normalized=True)
    data = fftshift(data, dim=(-3, -2))
    return data 
開發者ID:facebookresearch,項目名稱:fastMRI,代碼行數:19,代碼來源:transforms.py

示例2: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def forward(self, x):
         bsn = 1
         batchSize, dim, h, w = x.data.shape
         x_flat = x.permute(0, 2, 3, 1).contiguous().view(-1, dim)  # batchsize,h, w, dim,
         y = torch.ones(batchSize, self.output_dim, device=x.device)

         for img in range(batchSize // bsn):
             segLen = bsn * h * w
             upper = batchSize * h * w
             interLarge = torch.arange(img * segLen, min(upper, (img + 1) * segLen), dtype=torch.long)
             interSmall = torch.arange(img * bsn, min(upper, (img + 1) * bsn), dtype=torch.long)
             batch_x = x_flat[interLarge, :]

             sketch1 = batch_x.mm(self.sparseM[0].to(x.device)).unsqueeze(2)
             sketch1 = torch.fft(torch.cat((sketch1, torch.zeros(sketch1.size(), device=x.device)), dim=2), 1)

             sketch2 = batch_x.mm(self.sparseM[1].to(x.device)).unsqueeze(2)
             sketch2 = torch.fft(torch.cat((sketch2, torch.zeros(sketch2.size(), device=x.device)), dim=2), 1)

             Re = sketch1[:, :, 0].mul(sketch2[:, :, 0]) - sketch1[:, :, 1].mul(sketch2[:, :, 1])
             Im = sketch1[:, :, 0].mul(sketch2[:, :, 1]) + sketch1[:, :, 1].mul(sketch2[:, :, 0])

             tmp_y = torch.ifft(torch.cat((Re.unsqueeze(2), Im.unsqueeze(2)), dim=2), 1)[:, :, 0]

             y[interSmall, :] = tmp_y.view(torch.numel(interSmall), h, w, self.output_dim).sum(dim=1).sum(dim=1)

         y = self._signed_sqrt(y)
         y = self._l2norm(y)
         return y 
開發者ID:jiangtaoxie,項目名稱:fast-MPN-COV,代碼行數:31,代碼來源:CBP.py

示例3: ifft

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def ifft(t):
    return torch.ifft(t, 2) 
開發者ID:cszn,項目名稱:KAIR,代碼行數:4,代碼來源:utils_deblur.py

示例4: ifft

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def ifft(t):
    # Complex-to-complex Inverse Discrete Fourier Transform
    return torch.ifft(t, 2) 
開發者ID:cszn,項目名稱:KAIR,代碼行數:5,代碼來源:network_usrnet.py

示例5: pad_irfft3

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def pad_irfft3(F):
    """
    padded batch inverse real fft
    :param f: tensor of shape [..., res0, res1, res2/2+1, 2]
    """
    res = F.shape[-3]
    f0 = torch.ifft(F.transpose(-4,-2), signal_ndim=1).transpose(-2,-4)
    f1 = torch.ifft(f0.transpose(-3,-2), signal_ndim=1).transpose(-2,-3)
    f2 = torch.irfft(f1, signal_ndim=1, signal_sizes=[res]) # [..., res0, res1, res2]
    return f2 
開發者ID:maxjiang93,項目名稱:space_time_pde,代碼行數:12,代碼來源:torch_spec_operator.py

示例6: pad_ifft2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def pad_ifft2(F):
    """
    padded batch inverse real fft
    :param f: tensor of shape [..., res0, res1, res2/2+1, 2]
    """
    f0 = torch.ifft(F.transpose(-3,-2), signal_ndim=1).transpose(-2,-3)
    f1 = torch.ifft(f0, signal_ndim=1)
    return f2 
開發者ID:maxjiang93,項目名稱:space_time_pde,代碼行數:10,代碼來源:torch_spec_operator.py

示例7: so3_ifft

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def so3_ifft(x, for_grad=False, b_out=None):
    '''
    :param x: [l * m * n, ..., complex]
    '''
    assert x.size(-1) == 2
    nspec = x.size(0)
    b_in = round((3 / 4 * nspec) ** (1 / 3))
    assert nspec == b_in * (4 * b_in ** 2 - 1) // 3
    if b_out is None:
        b_out = b_in
    batch_size = x.size()[1:-1]

    x = x.view(nspec, -1, 2)  # [l * m * n, batch, complex] (nspec, nbatch, 2)

    '''
    :param x: [l * m * n, batch, complex] (b_in (4 b_in**2 - 1) // 3, nbatch, 2)
    :return: [batch, beta, alpha, gamma, complex] (nbatch, 2 b_out, 2 b_out, 2 b_out, 2)
    '''
    nbatch = x.size(1)

    wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device)  # [beta, l * m * n] (2 * b_out, nspec)

    output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2 * b_out, 2))
    if x.is_cuda and x.dtype == torch.float32:
        cuda_kernel = _setup_so3ifft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_output=False, device=x.device.index)
        cuda_kernel(x, wigner, output)  # [batch, beta, m, n, complex]
    else:
        output.fill_(0)
        for l in range(min(b_in, b_out)):
            s = slice(l * (4 * l**2 - 1) // 3, l * (4 * l**2 - 1) // 3 + (2 * l + 1) ** 2)
            out = torch.einsum("mnzc,bmn->zbmnc", (x[s].view(2 * l + 1, 2 * l + 1, -1, 2), wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1)))
            l1 = min(l, b_out - 1)  # if b_out < b_in
            output[:, :, :l1 + 1, :l1 + 1] += out[:, :, l: l + l1 + 1, l: l + l1 + 1]
            if l > 0:
                output[:, :, -l1:, :l1 + 1] += out[:, :, l - l1: l, l: l + l1 + 1]
                output[:, :, :l1 + 1, -l1:] += out[:, :, l: l + l1 + 1, l - l1: l]
                output[:, :, -l1:, -l1:] += out[:, :, l - l1: l, l - l1: l]

    output = torch.ifft(output, 2) * output.size(-2) ** 2  # [batch, beta, alpha, gamma, complex]    
    output = output.view(*batch_size, 2 * b_out, 2 * b_out, 2 * b_out, 2)
    return output 
開發者ID:jonas-koehler,項目名稱:s2cnn,代碼行數:43,代碼來源:so3_fft.py

示例8: backward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def backward(self, grad_output):  # pylint: disable=W
        # ifft of grad_output is not necessarily real, therefore we cannot use rifft
        return so3_ifft(grad_output, for_grad=True, b_out=self.b_in)[..., 0], None 
開發者ID:jonas-koehler,項目名稱:s2cnn,代碼行數:5,代碼來源:so3_fft.py

示例9: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def forward(self, bottom):

        batch_size, _, height, width = bottom.size()

        bottom_flat = bottom.permute(0, 2, 3, 1).contiguous().view(-1, self.input_dim1)

        sketch_1 = bottom_flat.mm(self.sparse_sketch_matrix1)
        sketch_2 = bottom_flat.mm(self.sparse_sketch_matrix2)

        im_zeros_1 = torch.zeros(sketch_1.size()).to(sketch_1.device)
        im_zeros_2 = torch.zeros(sketch_2.size()).to(sketch_2.device)
        fft1 = torch.fft(torch.cat([sketch_1.unsqueeze(-1), im_zeros_1.unsqueeze(-1)], dim=-1), 1)
        fft2 = torch.fft(torch.cat([sketch_2.unsqueeze(-1), im_zeros_2.unsqueeze(-1)], dim=-1), 1)

        fft_product_real = fft1[..., 0].mul(fft2[..., 0]) - fft1[..., 1].mul(fft2[..., 1])
        fft_product_imag = fft1[..., 0].mul(fft2[..., 1]) + fft1[..., 1].mul(fft2[..., 0])

        cbp_flat = torch.ifft(torch.cat([
            fft_product_real.unsqueeze(-1),
            fft_product_imag.unsqueeze(-1)],
            dim=-1), 1)[..., 0]

        cbp = cbp_flat.view(batch_size, height, width, self.output_dim)

        if self.sum_pool:
            cbp = cbp.sum(dim=[1, 2])

        return cbp 
開發者ID:lyakaap,項目名稱:Landmark2019-1st-and-3rd-Place-Solution,代碼行數:30,代碼來源:pooling.py

示例10: _setup

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def _setup(self, config):
        torch.manual_seed(config['seed'])
        self.model = nn.Sequential(
            BlockPermProduct(size=config['size'], complex=True, share_logit=False),
            Block2x2DiagProduct(size=config['size'], complex=True)
        )
        self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr'])
        self.n_steps_per_epoch = config['n_steps_per_epoch']
        size = config['size']
        self.target_matrix = torch.fft(real_to_complex(torch.eye(size)))
        # self.target_matrix = size * torch.ifft(real_to_complex(torch.eye(size)))
        self.input = real_to_complex(torch.eye(size)) 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:14,代碼來源:learning_fft_old.py

示例11: fft

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def fft(input, inverse=False):
    """Interface with torch FFT routines for 3D signals.
        fft of a 3d signal
        Example
        -------
        x = torch.randn(128, 32, 32, 32, 2)

        x_fft = fft(x)
        x_ifft = fft(x, inverse=True)
        Parameters
        ----------
        x : tensor
            Complex input for the FFT.
        inverse : bool
            True for computing the inverse FFT.

        Raises
        ------
        TypeError
            In the event that x does not have a final dimension 2 i.e. not
            complex.

        Returns
        -------
        output : tensor
            Result of FFT or IFFT.
    """
    if not _is_complex(input):
        raise TypeError('The input should be complex (e.g. last dimension is 2)')
    if inverse:
        return torch.ifft(input, 3)
    return torch.fft(input, 3) 
開發者ID:kymatio,項目名稱:kymatio,代碼行數:34,代碼來源:torch_backend.py

示例12: torch_ifft2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def torch_ifft2(k, normalized=True):
    """ ifft on last 2 dim """
    kt = numpy_to_torch(k)
    xt = torch.ifft(kt, 2, normalized)
    return torch_to_complex_numpy(xt) 
開發者ID:khammernik,項目名稱:sigmanet,代碼行數:7,代碼來源:utils.py

示例13: torch_ifft2c

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def torch_ifft2c(x, normalized=True):
    """ ifft2 on last 2 dim """
    x = np.fft.ifftshift(x, axes=(-2,-1))
    xt = numpy_to_torch(x)
    kt = torch.ifft(xt, 2, normalized=True)
    k = torch_to_complex_numpy(kt)
    return np.fft.fftshift(k, axes=(-2,-1)) 
開發者ID:khammernik,項目名稱:sigmanet,代碼行數:9,代碼來源:utils.py

示例14: ifft2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def ifft2(data):
    assert data.size(-1) == 2
    data = torch.ifft(data, 2, normalized=True)
    return data 
開發者ID:khammernik,項目名稱:sigmanet,代碼行數:6,代碼來源:fft.py

示例15: ifft2c

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ifft [as 別名]
def ifft2c(data):
    """
    Apply centered 2-dimensional Inverse Fast Fourier Transform.
    Args:
        data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions
            -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are
            assumed to be batch dimensions.
    Returns:
        torch.Tensor: The IFFT of the input.
    """
    assert data.size(-1) == 2
    data = ifftshift(data, dim=(-3, -2))
    data = torch.ifft(data, 2, normalized=True)
    data = fftshift(data, dim=(-3, -2))
    return data 
開發者ID:khammernik,項目名稱:sigmanet,代碼行數:17,代碼來源:fft.py


注:本文中的torch.ifft方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。