當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.exp方法代碼示例

本文整理匯總了Python中torch.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.exp方法的具體用法?Python torch.exp怎麽用?Python torch.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def test(self, dataset):
        self.model.eval()
        with torch.no_grad():
            total_loss = 0.0
            predictions = torch.zeros(len(dataset), dtype=torch.float, device='cpu')
            indices = torch.arange(1, dataset.num_classes + 1, dtype=torch.float, device='cpu')
            for idx in tqdm(range(len(dataset)), desc='Testing epoch  ' + str(self.epoch) + ''):
                ltree, linput, rtree, rinput, label = dataset[idx]
                target = utils.map_label_to_target(label, dataset.num_classes)
                linput, rinput = linput.to(self.device), rinput.to(self.device)
                target = target.to(self.device)
                output = self.model(ltree, linput, rtree, rinput)
                loss = self.criterion(output, target)
                total_loss += loss.item()
                output = output.squeeze().to('cpu')
                predictions[idx] = torch.dot(indices, torch.exp(output))
        return total_loss / len(dataset), predictions 
開發者ID:dasguptar,項目名稱:treelstm.pytorch,代碼行數:19,代碼來源:trainer.py

示例2: plot_wh_methods

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def plot_wh_methods():  # from utils.utils import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), dpi=150)
    plt.plot(x, ya, '.-', label='yolo method')
    plt.plot(x, yb ** 2, '.-', label='^2 power method')
    plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.legend()
    fig.tight_layout()
    fig.savefig('comparison.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:20,代碼來源:utils.py

示例3: guassian_kernel

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def guassian_kernel(self, source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
        n_samples = int(source.size()[0]) + int(target.size()[0])
        total = torch.cat([source, target], dim=0)
        total0 = total.unsqueeze(0).expand(
            int(total.size(0)), int(total.size(0)), int(total.size(1)))
        total1 = total.unsqueeze(1).expand(
            int(total.size(0)), int(total.size(0)), int(total.size(1)))
        L2_distance = ((total0-total1)**2).sum(2)
        if fix_sigma:
            bandwidth = fix_sigma
        else:
            bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)
        bandwidth /= kernel_mul ** (kernel_num // 2)
        bandwidth_list = [bandwidth * (kernel_mul**i)
                          for i in range(kernel_num)]
        kernel_val = [torch.exp(-L2_distance / bandwidth_temp)
                      for bandwidth_temp in bandwidth_list]
        return sum(kernel_val) 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:20,代碼來源:mmd.py

示例4: apply_box_deltas_2D

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def apply_box_deltas_2D(boxes, deltas):
    """Applies the given deltas to the given boxes.
    boxes: [N, 4] where each row is y1, x1, y2, x2
    deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)]
    """
    # Convert to y, x, h, w
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # Apply deltas
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= torch.exp(deltas[:, 2])
    width *= torch.exp(deltas[:, 3])
    # Convert back to y1, x1, y2, x2
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    result = torch.stack([y1, x1, y2, x2], dim=1)
    return result 
開發者ID:MIC-DKFZ,項目名稱:medicaldetectiontoolkit,代碼行數:24,代碼來源:model_utils.py

示例5: mu_law_decoding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def mu_law_decoding(
        x_mu: Tensor,
        quantization_channels: int
) -> Tensor:
    r"""Decode mu-law encoded signal.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This expects an input with values between 0 and quantization_channels - 1
    and returns a signal scaled between -1 and 1.

    Args:
        x_mu (Tensor): Input tensor
        quantization_channels (int): Number of channels

    Returns:
        Tensor: Input after mu-law decoding
    """
    mu = quantization_channels - 1.0
    if not x_mu.is_floating_point():
        x_mu = x_mu.to(torch.float)
    mu = torch.tensor(mu, dtype=x_mu.dtype)
    x = ((x_mu) / mu) * 2 - 1.0
    x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
    return x 
開發者ID:pytorch,項目名稱:audio,代碼行數:26,代碼來源:functional.py

示例6: FocalLoss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def FocalLoss(self, logit, target, gamma=2, alpha=0.5):
        n, c, h, w = logit.size()
        criterion = nn.CrossEntropyLoss(weight=self.weight, ignore_index=self.ignore_index,
                                        size_average=self.size_average)
        if self.cuda:
            criterion = criterion.cuda()

        logpt = -criterion(logit, target.long())
        pt = torch.exp(logpt)
        if alpha is not None:
            logpt *= alpha
        loss = -((1 - pt) ** gamma) * logpt

        if self.batch_average:
            loss /= n

        return loss 
開發者ID:clovaai,項目名稱:overhaul-distillation,代碼行數:19,代碼來源:loss.py

示例7: dynamic_evaluate

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def dynamic_evaluate(model, test_loader, val_loader, args):
    tester = Tester(model, args)
    if os.path.exists(os.path.join(args.save, 'logits_single.pth')): 
        val_pred, val_target, test_pred, test_target = \
            torch.load(os.path.join(args.save, 'logits_single.pth')) 
    else: 
        val_pred, val_target = tester.calc_logit(val_loader) 
        test_pred, test_target = tester.calc_logit(test_loader) 
        torch.save((val_pred, val_target, test_pred, test_target), 
                    os.path.join(args.save, 'logits_single.pth'))

    flops = torch.load(os.path.join(args.save, 'flops.pth'))

    with open(os.path.join(args.save, 'dynamic.txt'), 'w') as fout:
        for p in range(1, 40):
            print("*********************")
            _p = torch.FloatTensor(1).fill_(p * 1.0 / 20)
            probs = torch.exp(torch.log(_p) * torch.range(1, args.nBlocks))
            probs /= probs.sum()
            acc_val, _, T = tester.dynamic_eval_find_threshold(
                val_pred, val_target, probs, flops)
            acc_test, exp_flops = tester.dynamic_eval_with_threshold(
                test_pred, test_target, flops, T)
            print('valid acc: {:.3f}, test acc: {:.3f}, test flops: {:.2f}M'.format(acc_val, acc_test, exp_flops / 1e6))
            fout.write('{}\t{}\n'.format(acc_test, exp_flops.item())) 
開發者ID:kalviny,項目名稱:MSDNet-PyTorch,代碼行數:27,代碼來源:adaptive_inference.py

示例8: dynamic_eval_with_threshold

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def dynamic_eval_with_threshold(self, logits, targets, flops, T):
        n_stage, n_sample, _ = logits.size()
        max_preds, argmax_preds = logits.max(dim=2, keepdim=False) # take the max logits as confidence

        acc_rec, exp = torch.zeros(n_stage), torch.zeros(n_stage)
        acc, expected_flops = 0, 0
        for i in range(n_sample):
            gold_label = targets[i]
            for k in range(n_stage):
                if max_preds[k][i].item() >= T[k]: # force to exit at k
                    _g = int(gold_label.item())
                    _pred = int(argmax_preds[k][i].item())
                    if _g == _pred:
                        acc += 1
                        acc_rec[k] += 1
                    exp[k] += 1
                    break
        acc_all, sample_all = 0, 0
        for k in range(n_stage):
            _t = exp[k] * 1.0 / n_sample
            sample_all += exp[k]
            expected_flops += _t * flops[k]
            acc_all += acc_rec[k]

        return acc * 100.0 / n_sample, expected_flops 
開發者ID:kalviny,項目名稱:MSDNet-PyTorch,代碼行數:27,代碼來源:adaptive_inference.py

示例9: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat((
        priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
        priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:21,代碼來源:box_utils.py

示例10: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def forward(self, z_enc_out, u_enc_out, u_input_np, m_t_input, degree_input, last_hidden, z_input_np):
        sparse_z_input = Variable(self.get_sparse_selective_input(z_input_np), requires_grad=False)

        m_embed = self.emb(m_t_input)
        z_context = self.attn_z(last_hidden, z_enc_out)
        u_context = self.attn_u(last_hidden, u_enc_out)
        gru_in = torch.cat([m_embed, u_context, z_context, degree_input.unsqueeze(0)], dim=2)
        gru_out, last_hidden = self.gru(gru_in, last_hidden)
        gen_score = self.proj(torch.cat([z_context, u_context, gru_out], 2)).squeeze(0)
        z_copy_score = F.tanh(self.proj_copy2(z_enc_out.transpose(0, 1)))
        z_copy_score = torch.matmul(z_copy_score, gru_out.squeeze(0).unsqueeze(2)).squeeze(2)
        z_copy_score = z_copy_score.cpu()
        z_copy_score_max = torch.max(z_copy_score, dim=1, keepdim=True)[0]
        z_copy_score = torch.exp(z_copy_score - z_copy_score_max)  # [B,T]
        z_copy_score = torch.log(torch.bmm(z_copy_score.unsqueeze(1), sparse_z_input)).squeeze(
            1) + z_copy_score_max  # [B,V]
        z_copy_score = cuda_(z_copy_score)

        scores = F.softmax(torch.cat([gen_score, z_copy_score], dim=1), dim=1)
        gen_score, z_copy_score = scores[:, :cfg.vocab_size], \
                                  scores[:, cfg.vocab_size:]
        proba = gen_score + z_copy_score[:, :cfg.vocab_size]  # [B,V]
        proba = torch.cat([proba, z_copy_score[:, cfg.vocab_size:]], 1)
        return proba, last_hidden, gru_out 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:26,代碼來源:tsd_net.py

示例11: bbox_transform_inv

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def bbox_transform_inv(boxes, deltas):
  # Input should be both tensor or both Variable and on the same device
  if len(boxes) == 0:
    return deltas.detach() * 0

  widths = boxes[:, 2] - boxes[:, 0] + 1.0
  heights = boxes[:, 3] - boxes[:, 1] + 1.0
  ctr_x = boxes[:, 0] + 0.5 * widths
  ctr_y = boxes[:, 1] + 0.5 * heights

  dx = deltas[:, 0::4]
  dy = deltas[:, 1::4]
  dw = deltas[:, 2::4]
  dh = deltas[:, 3::4]
  
  pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
  pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
  pred_w = torch.exp(dw) * widths.unsqueeze(1)
  pred_h = torch.exp(dh) * heights.unsqueeze(1)

  pred_boxes = torch.cat(\
    [_.unsqueeze(2) for _ in [pred_ctr_x - 0.5 * pred_w,\
                              pred_ctr_y - 0.5 * pred_h,\
                              pred_ctr_x + 0.5 * pred_w,\
                              pred_ctr_y + 0.5 * pred_h]], 2).view(len(boxes), -1)

  return pred_boxes 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:29,代碼來源:bbox_transform.py

示例12: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe) 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:15,代碼來源:model2.py

示例13: rsample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def rsample(self, z_vecs, W_mean, W_var, perturb=True):
        batch_size = z_vecs.size(0)
        z_mean = W_mean(z_vecs)
        z_log_var = -torch.abs( W_var(z_vecs) )
        kl_loss = -0.5 * torch.sum(1.0 + z_log_var - z_mean * z_mean - torch.exp(z_log_var)) / batch_size
        epsilon = torch.randn_like(z_mean).cuda()
        z_vecs = z_mean + torch.exp(z_log_var / 2) * epsilon if perturb else z_mean
        return z_vecs, kl_loss 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:10,代碼來源:hgnn.py

示例14: rsample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def rsample(self, z_vecs, W_mean, W_var):
        batch_size = z_vecs.size(0)
        z_mean = W_mean(z_vecs)
        z_log_var = -torch.abs( W_var(z_vecs) )
        kl_loss = -0.5 * torch.sum(1.0 + z_log_var - z_mean * z_mean - torch.exp(z_log_var)) / batch_size
        epsilon = torch.randn_like(z_mean).cuda()
        z_vecs = z_mean + torch.exp(z_log_var / 2) * epsilon
        return z_vecs, kl_loss 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:10,代碼來源:hgnn.py

示例15: gen_grid_from_reg

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import exp [as 別名]
def gen_grid_from_reg(self, reg, previous_boxes):
        """Base on the previous bboxes and regression values, we compute the
        regressed bboxes and generate the grids on the bboxes.

        :param reg: the regression value to previous bboxes.
        :param previous_boxes: previous bboxes.
        :return: generate grids on the regressed bboxes.
        """
        b, _, h, w = reg.shape
        bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
        bwh = (previous_boxes[:, 2:, ...] -
               previous_boxes[:, :2, ...]).clamp(min=1e-6)
        grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
            reg[:, 2:, ...])
        grid_wh = bwh * torch.exp(reg[:, 2:, ...])
        grid_left = grid_topleft[:, [0], ...]
        grid_top = grid_topleft[:, [1], ...]
        grid_width = grid_wh[:, [0], ...]
        grid_height = grid_wh[:, [1], ...]
        intervel = torch.linspace(0., 1., self.dcn_kernel).view(
            1, self.dcn_kernel, 1, 1).type_as(reg)
        grid_x = grid_left + grid_width * intervel
        grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
        grid_x = grid_x.view(b, -1, h, w)
        grid_y = grid_top + grid_height * intervel
        grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
        grid_y = grid_y.view(b, -1, h, w)
        grid_yx = torch.stack([grid_y, grid_x], dim=2)
        grid_yx = grid_yx.view(b, -1, h, w)
        regressed_bbox = torch.cat([
            grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
        ], 1)
        return grid_yx, regressed_bbox 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:35,代碼來源:reppoints_head.py


注:本文中的torch.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。