當前位置: 首頁>>代碼示例>>Python>>正文


Python categorical.Categorical方法代碼示例

本文整理匯總了Python中torch.distributions.categorical.Categorical方法的典型用法代碼示例。如果您正苦於以下問題:Python categorical.Categorical方法的具體用法?Python categorical.Categorical怎麽用?Python categorical.Categorical使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.distributions.categorical的用法示例。


在下文中一共展示了categorical.Categorical方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate_iters_indices

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def generate_iters_indices(self, num_of_iters):
        from_iter = len(self.iter_indices_per_iteration)
        for iter_num in range(from_iter, from_iter+num_of_iters):

            # Get random number of samples per task (according to iteration distribution)
            tsks = Categorical(probs=self.tasks_probs_over_iterations[iter_num]).sample(torch.Size([self.samples_in_batch]))
            # Generate samples indices for iter_num
            iter_indices = torch.zeros(0, dtype=torch.int32)
            for task_idx in range(self.num_of_tasks):
                if self.tasks_probs_over_iterations[iter_num][task_idx] > 0:
                    num_samples_from_task = (tsks == task_idx).sum().item()
                    self.samples_distribution_over_time[task_idx].append(num_samples_from_task)
                    # Randomize indices for each task (to allow creation of random task batch)
                    tasks_inner_permute = np.random.permutation(len(self.tasks_samples_indices[task_idx]))
                    rand_indices_of_task = tasks_inner_permute[:num_samples_from_task]
                    iter_indices = torch.cat([iter_indices, self.tasks_samples_indices[task_idx][rand_indices_of_task]])
                else:
                    self.samples_distribution_over_time[task_idx].append(0)
            self.iter_indices_per_iteration.append(iter_indices.tolist()) 
開發者ID:igolan,項目名稱:bgd,代碼行數:21,代碼來源:datasets.py

示例2: step

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def step(self, action):
        """ One step forward """
        with torch.no_grad():
            action = torch.Tensor(action).unsqueeze(0)
            mu, sigma, pi, r, d, n_h = self._rnn(action, self._lstate, self._hstate)
            pi = pi.squeeze()
            mixt = Categorical(torch.exp(pi)).sample().item()

            self._lstate = mu[:, mixt, :] # + sigma[:, mixt, :] * torch.randn_like(mu[:, mixt, :])
            self._hstate = n_h

            self._obs = self._decoder(self._lstate)
            np_obs = self._obs.numpy()
            np_obs = np.clip(np_obs, 0, 1) * 255
            np_obs = np.transpose(np_obs, (0, 2, 3, 1))
            np_obs = np_obs.squeeze()
            np_obs = np_obs.astype(np.uint8)
            self._visual_obs = np_obs

            return np_obs, r.item(), d.item() > 0 
開發者ID:ctallec,項目名稱:world-models,代碼行數:22,代碼來源:simulated_carracing.py

示例3: forward

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def forward(self):

    inputs, h0 = self.input_vars, None
    log_probs, entropys, sampled_arch = [], [], []
    for iedge in range(self.num_edge):
      outputs, h0 = self.w_lstm(inputs, h0)
      
      logits = self.w_pred(outputs)
      logits = logits / self.temperature
      logits = self.tanh_constant * torch.tanh(logits)
      # distribution
      op_distribution = Categorical(logits=logits)
      op_index    = op_distribution.sample()
      sampled_arch.append( op_index.item() )

      op_log_prob = op_distribution.log_prob(op_index)
      log_probs.append( op_log_prob.view(-1) )
      op_entropy  = op_distribution.entropy()
      entropys.append( op_entropy.view(-1) )
      
      # obtain the input embedding for the next step
      inputs = self.w_embd(op_index)
    return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:25,代碼來源:search_model_enas_utils.py

示例4: forward

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def forward(self, x, a=None, old_logits=None):
        logits = self.logits(x)
        policy = Categorical(logits=logits)

        pi = policy.sample()
        logp_pi = policy.log_prob(pi).squeeze()

        if a is not None:
            logp = policy.log_prob(a).squeeze()
        else:
            logp = None

        if old_logits is not None:
            old_policy = Categorical(logits=old_logits)
            d_kl = kl_divergence(old_policy, policy).mean()
        else:
            d_kl = None

        info = {"old_logits": logits.detach().numpy()}

        return pi, logp, logp_pi, info, d_kl 
開發者ID:kashif,項目名稱:firedup,代碼行數:23,代碼來源:core.py

示例5: forward

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def forward(self, obs, memory):
        x = obs.image.transpose(1, 3).transpose(2, 3)
        x = self.image_conv(x)
        x = x.reshape(x.shape[0], -1)

        if self.use_memory:
            hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
            hidden = self.memory_rnn(x, hidden)
            embedding = hidden[0]
            memory = torch.cat(hidden, dim=1)
        else:
            embedding = x

        if self.use_text:
            embed_text = self._get_embed_text(obs.text)
            embedding = torch.cat((embedding, embed_text), dim=1)

        x = self.actor(embedding)
        dist = Categorical(logits=F.log_softmax(x, dim=1))

        x = self.critic(embedding)
        value = x.squeeze(1)

        return dist, value, memory 
開發者ID:lcswillems,項目名稱:rl-starter-files,代碼行數:26,代碼來源:model.py

示例6: __init__

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def __init__(self, scores, mask=None):
        self.mask = mask
        if mask is None:
            self.cat_distr = TorchCategorical(F.softmax(scores, dim=-1))
            self.n = scores.shape[0]
            self.log_n = math.log(self.n)
        else:
            self.n = self.mask.sum(dim=-1)
            self.log_n = (self.n + 1e-17).log()
            self.cat_distr = TorchCategorical(Categorical.masked_softmax(scores, self.mask)) 
開發者ID:facebookresearch,項目名稱:latent-treelstm,代碼行數:12,代碼來源:utils.py

示例7: _distribution

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def _distribution(self, obs):
        logits = self.logits_net(obs)
        return Categorical(logits=logits) 
開發者ID:openai,項目名稱:spinningup,代碼行數:5,代碼來源:core.py

示例8: get_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def get_action(self, x, action=None):
        logits = self.actor(x)
        probs = Categorical(logits=logits)
        if action is None:
            action = probs.sample()
        return action, probs.log_prob(action), probs.entropy() 
開發者ID:vwxyzjn,項目名稱:cleanrl,代碼行數:8,代碼來源:ppo.py

示例9: get_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def get_action(self, x, action=None):
        logits = self.actor(self.forward(x))
        probs = Categorical(logits=logits)
        if action is None:
            action = probs.sample()
        return action, probs.log_prob(action), probs.entropy() 
開發者ID:vwxyzjn,項目名稱:cleanrl,代碼行數:8,代碼來源:ppo_atari.py

示例10: get_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def get_action(self, x, action=None):
        logits = self.forward(x)
        probs = Categorical(logits=logits)
        if action is None:
            action = probs.sample()
        return action, probs.log_prob(action), probs.entropy() 
開發者ID:vwxyzjn,項目名稱:cleanrl,代碼行數:8,代碼來源:ppo_simple.py

示例11: get_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def get_action(self, x, action=None):
        logits = self.actor(self.forward(x))
        split_logits = torch.split(logits, envs.action_space.nvec.tolist(), dim=1)
        multi_categoricals = [Categorical(logits=logits) for logits in split_logits]
        if action is None:
            action = torch.stack([categorical.sample() for categorical in multi_categoricals])
        logprob = torch.stack([categorical.log_prob(a) for a, categorical in zip(action, multi_categoricals)])
        entropy = torch.stack([categorical.entropy() for categorical in multi_categoricals])
        return action, logprob.sum(0), entropy.sum(0) 
開發者ID:vwxyzjn,項目名稱:cleanrl,代碼行數:11,代碼來源:ppo_self_play.py

示例12: get_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def get_action(self, x):
        action_probs, action_logps = self.forward(x)
        dist = Categorical(probs=action_probs)
        dist.entropy()
        return dist.sample(), action_probs, action_logps, dist.entropy().sum() 
開發者ID:vwxyzjn,項目名稱:cleanrl,代碼行數:7,代碼來源:sac.py

示例13: predict_action

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def predict_action(self, img, memory):
        batch_size = img.size(0)

        #x = img.view(batch_size, -1)
        x = self.encoder(img)

        memory = self.rnn(x, memory)
        action_probs = self.action_probs(memory)
        dist = Categorical(logits=action_probs)

        return dist, memory

############################################################################## 
開發者ID:maximecb,項目名稱:gym-miniworld,代碼行數:15,代碼來源:rand_agent.py

示例14: discrete_policy

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def discrete_policy(self, obs):
        """
        Calcula una distribución discreta o categórica sobre las acciones dadas las observaciones del agente
        :param obs: observaciones del agente
        :return: politica formada por una distribución sobre las acciones a partir de las observaciones
        """
        logits = self.actor(obs)
        value = self.critic(obs)
        
        self.logits = logits.to(torch.device("cpu"))
        self.value = value.to(torch.device("cpu"))
        
        self.action_distribution = Categorical(logits = self.logits)
        return self.action_distribution 
開發者ID:joanby,項目名稱:ia-course,代碼行數:16,代碼來源:a2c.py

示例15: discrete_policy

# 需要導入模塊: from torch.distributions import categorical [as 別名]
# 或者: from torch.distributions.categorical import Categorical [as 別名]
def discrete_policy(self, obs):
        """
        Calculates a discrete/categorical distribution over actions given observations
        :param obs: Agent's observation
        :return: policy, a distribution over actions for the given observation
        """
        logits = self.actor(obs)
        value = self.critic(obs)
        self.logits = logits.to(torch.device("cpu"))
        self.value = value.to(torch.device("cpu"))
        self.action_distribution = Categorical(logits=self.logits)
        return self.action_distribution 
開發者ID:PacktPublishing,項目名稱:Hands-On-Intelligent-Agents-with-OpenAI-Gym,代碼行數:14,代碼來源:a2c_agent.py


注:本文中的torch.distributions.categorical.Categorical方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。