當前位置: 首頁>>代碼示例>>Python>>正文


Python distributions.Categorical方法代碼示例

本文整理匯總了Python中torch.distributions.Categorical方法的典型用法代碼示例。如果您正苦於以下問題:Python distributions.Categorical方法的具體用法?Python distributions.Categorical怎麽用?Python distributions.Categorical使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.distributions的用法示例。


在下文中一共展示了distributions.Categorical方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_rl

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sample_rl(self, images, seq_len, *args):
        device = images.device
        b_s = images.size(0)
        state = self.init_state(b_s, device)
        out = None

        outputs = []
        log_probs = []
        for t in range(seq_len):
            out, state = self.step(t, state, out, images, None, *args, mode='feedback')
            distr = distributions.Categorical(logits=out)
            out = distr.sample()
            outputs.append(out)
            log_probs.append(distr.log_prob(out))

        return torch.cat([o.unsqueeze(1) for o in outputs], 1), torch.cat([o.unsqueeze(1) for o in log_probs], 1) 
開發者ID:aimagelab,項目名稱:speaksee,代碼行數:18,代碼來源:CaptioningModel.py

示例2: forward

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def forward(self, state, hidden=None):
    explore = random.random() < self.epsilon
    state = state.unsqueeze(0)
    hidden = hidden.unsqueeze(0) if hidden else None
    logits = self.policy(
      state, hidden=hidden
    )
    outputs = [None]
    if isinstance(logits, tuple):
      logits, outputs = logits

    action = logits.argmax(dim=1)

    if explore:
      logits = torch.ones_like(logits)
      logits = logits / logits.size(1)
      action = Categorical(logits=logits).sample()

    return action[0], logits[0], outputs[0] 
開發者ID:mjendrusch,項目名稱:torchsupport,代碼行數:21,代碼來源:basic.py

示例3: select_action

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def select_action(self, agent_inputs, avail_actions, t_env, test_mode=False):

        # Assuming agent_inputs is a batch of Q-Values for each agent bav
        self.epsilon = self.schedule.eval(t_env)

        if test_mode:
            # Greedy action selection only
            self.epsilon = 0.0

        # mask actions that are excluded from selection
        masked_q_values = agent_inputs.clone()
        masked_q_values[avail_actions == 0.0] = -float("inf")  # should never be selected!

        random_numbers = th.rand_like(agent_inputs[:, :, 0])
        pick_random = (random_numbers < self.epsilon).long()
        random_actions = Categorical(avail_actions.float()).sample().long()

        picked_actions = pick_random * random_actions + (1 - pick_random) * masked_q_values.max(dim=2)[1]
        return picked_actions 
開發者ID:oxwhirl,項目名稱:pymarl,代碼行數:21,代碼來源:action_selectors.py

示例4: select_action

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def select_action(self, ob_id, state):
        r"""
        This function is mostly borrowed from the Reinforcement Learning example.
        See https://github.com/pytorch/examples/tree/master/reinforcement_learning
        The main difference is that instead of keeping all probs in one list,
        the agent keeps probs in a dictionary, one key per observer.

        NB: no need to enforce thread-safety here as GIL will serialize
        executions.
        """
        state = torch.from_numpy(state).float().unsqueeze(0)
        probs = self.policy(state)
        m = Categorical(probs)
        action = m.sample()
        self.saved_log_probs[ob_id].append(m.log_prob(action))
        return action.item() 
開發者ID:pytorch,項目名稱:examples,代碼行數:18,代碼來源:main.py

示例5: select_action_batch

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def select_action_batch(agent_rref, ob_id, state):
        r"""
        Batching select_action: In each step, the agent waits for states from
        all observers, and process them together. This helps to reduce the
        number of CUDA kernels launched and hence speed up amortized inference
        speed.
        """
        self = agent_rref.local_value()
        self.states[ob_id].copy_(state)
        future_action = self.future_actions.then(
            lambda future_actions: future_actions.wait()[ob_id].item()
        )

        with self.lock:
            self.pending_states -= 1
            if self.pending_states == 0:
                self.pending_states = len(self.ob_rrefs)
                probs = self.policy(self.states.cuda())
                m = Categorical(probs)
                actions = m.sample()
                self.saved_log_probs.append(m.log_prob(actions).t()[0])
                future_actions = self.future_actions
                self.future_actions = torch.futures.Future()
                future_actions.set_result(actions.cpu())
        return future_action 
開發者ID:pytorch,項目名稱:examples,代碼行數:27,代碼來源:reinforce.py

示例6: forward

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def forward(self, input, params=None):
        if params is None:
            params = OrderedDict(self.named_parameters())

        output = input
        for i in range(1, self.num_layers):
            output = F.linear(output,
                              weight=params['layer{0}.weight'.format(i)],
                              bias=params['layer{0}.bias'.format(i)])
            output = self.nonlinearity(output)

        logits = F.linear(output,
                          weight=params['layer{0}.weight'.format(self.num_layers)],
                          bias=params['layer{0}.bias'.format(self.num_layers)])

        return Categorical(logits=logits) 
開發者ID:tristandeleu,項目名稱:pytorch-maml-rl,代碼行數:18,代碼來源:categorical_mlp.py

示例7: sample_model_spec

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sample_model_spec(self, num):
        """
        Sample model specs by number.
        :param num:
        :return: list, num x [architecture ]
        """
        alpha_topology = self.alpha_topology.detach().clone()
        alpha_ops = self.alpha_ops.detach().clone()
        sample_archs = []
        sample_ops = []
        with torch.no_grad():
            for i in range(self.num_intermediate_nodes):
                # align with topoligy weights
                probs = nn.functional.softmax(alpha_topology[: i+2, i], dim=0)
                sample_archs.append(Categorical(probs))
                probs_op = nn.functional.softmax(alpha_ops[:, i], dim=0)
                sample_ops.append(Categorical(probs_op))
            return self._sample_model_spec(num, sample_archs, sample_ops) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:20,代碼來源:model_search_nasbench.py

示例8: sample_model_spec

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sample_model_spec(self, num):
        """
        Override, sample the alpha via gumbel softmax instead of normal softmax.
        :param num:
        :return:
        """
        alpha_topology = self.alpha_topology.detach().clone()
        alpha_ops = self.alpha_ops.detach().clone()
        sample_archs = []
        sample_ops = []
        gumbel_dist = Gumbel(torch.tensor([.0]), torch.tensor([1.0]))
        with torch.no_grad():
            for i in range(self.num_intermediate_nodes):
                # align with topoligy weights
                probs = gumbel_softmax(alpha_topology[: i+2, i], self.temperature(), gumbel_dist)
                sample_archs.append(Categorical(probs))
                probs_op = gumbel_softmax(alpha_ops[:, i], self.temperature(), gumbel_dist)
                sample_ops.append(Categorical(probs_op))

            return self._sample_model_spec(num, sample_archs, sample_ops) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:22,代碼來源:model_search_nasbench_fbnet.py

示例9: sample_rl

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sample_rl(self, statics, *args):
        device = statics[0].device
        b_s = statics[0].size(0)
        state = self.init_state(b_s, device)

        outputs = []
        log_probs = []
        for t in range(self.seq_len):
            prev_outputs = outputs[-1] if t > 0 else None
            outs, state = self.step(t, state, prev_outputs, statics, None, *args, mode='feedback')
            outputs.append([])
            log_probs.append([])
            for out in outs:
                distr = distributions.Categorical(logits=out)
                sample = distr.sample()
                outputs[-1].append(sample)
                log_probs[-1].append(distr.log_prob(sample))

        outputs = list(zip(*outputs))
        outputs = tuple(torch.cat([oo.unsqueeze(1) for oo in o], 1) for o in outputs)
        log_probs = list(zip(*log_probs))
        log_probs = tuple(torch.cat([oo.unsqueeze(1) for oo in o], 1) for o in log_probs)
        return outputs, log_probs 
開發者ID:aimagelab,項目名稱:show-control-and-tell,代碼行數:25,代碼來源:CaptioningModel.py

示例10: gen_one_noTcond

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def gen_one_noTcond(self, eos_index, max_T):
        hidden = self.init_hidden(1)
        device = hidden[0].device
        
        last_rnn_outp = hidden[0][-1] # [1, C]
        generation = []

        for t in range(max_T):
            scores = self.output_embedding(last_rnn_outp) # [1, V]
            word_dist = Categorical(logits=scores)
            selected_index = word_dist.sample() # [1]

            if selected_index == eos_index:
                break

            generation.append(selected_index)
            inp_embeddings = self.input_embedding(selected_index) # [1, inp_E]
            last_rnn_outp, hidden = self.rnn(inp_embeddings[None, :, :], hidden)
            last_rnn_outp = last_rnn_outp[0]

        return torch.tensor(generation, dtype=torch.long, device=device) 
開發者ID:harvardnlp,項目名稱:TextFlow,代碼行數:23,代碼來源:baseline_model.py

示例11: sample

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sample(self, time: int, outputs: torch.Tensor) -> torch.LongTensor:
        del time  # unused by sample_fn
        # Outputs are logits, we sample from the top-k candidates
        if not torch.is_tensor(outputs):
            raise TypeError(
                f"Expected outputs to be a single Tensor, got: {type(outputs)}")
        if self._softmax_temperature is None:
            logits = outputs
        else:
            logits = outputs / self._softmax_temperature

        logits = _top_k_logits(logits, k=self._top_k)

        sample_id_sampler = Categorical(logits=logits)
        sample_ids = sample_id_sampler.sample()

        return sample_ids 
開發者ID:asyml,項目名稱:texar-pytorch,代碼行數:19,代碼來源:decoder_helpers.py

示例12: pi_beta_sample

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def pi_beta_sample(self, state, beta, action, **kwargs):
        # 1. obtain probabilities
        # note: detach is to block gradient
        beta_probs = beta(state.detach(), action=action)
        pi_probs = self.forward(state)

        # 2. probabilities -> categorical distribution.
        beta_categorical = Categorical(beta_probs)
        pi_categorical = Categorical(pi_probs)

        # 3. sample the actions
        # See this issue: https://github.com/awarebayes/RecNN/issues/7
        # usually it works like:
        # pi_action = pi_categorical.sample(); beta_action = beta_categorical.sample();
        # but changing the action_source to {pi: beta, beta: beta} can be configured to be:
        # pi_action = beta_categorical.sample(); beta_action = beta_categorical.sample();
        available_actions = {'pi': pi_categorical.sample(), 'beta': beta_categorical.sample()}
        pi_action = available_actions[self.action_source['pi']]
        beta_action = available_actions[self.action_source['beta']]

        # 4. calculate stuff we need
        pi_log_prob = pi_categorical.log_prob(pi_action)
        beta_log_prob = beta_categorical.log_prob(beta_action)

        return pi_log_prob, beta_log_prob, pi_probs 
開發者ID:awarebayes,項目名稱:RecNN,代碼行數:27,代碼來源:models.py

示例13: sampling_decode_single

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def sampling_decode_single(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input, bspan_index):
        decoded = []
        reward_sum = 0
        log_probs = []
        rewards = []
        bspan_index_np = np.array(bspan_index).reshape(-1, 1)
        for t in range(self.max_ts):
            # reward
            reward, finished = self.reward(m_tm1.data.view(-1), decoded, bspan_index)
            reward_sum += reward
            rewards.append(reward)
            if t == self.max_ts - 1:
                finished = True
            if finished:
                loss = self.finish_episode(log_probs, rewards)
                return loss
            # action
            proba, last_hidden, _ = self.m_decoder(pz_dec_outs, u_enc_out, u_input_np, m_tm1,
                                                   degree_input, last_hidden, bspan_index_np)
            proba = proba.squeeze(0)  # [B,V]
            dis = Categorical(proba)
            action = dis.sample()
            log_probs.append(dis.log_prob(action))
            mt_index = action.data.view(-1)
            decoded.append(mt_index.clone())

            for i in range(mt_index.size(0)):
                if mt_index[i] >= cfg.vocab_size:
                    mt_index[i] = 2  # unk

            m_tm1 = cuda_(Variable(mt_index).view(1, -1)) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:33,代碼來源:tsd_net.py

示例14: __init__

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def __init__(self, probs=None, logits=None, validate_args=None):
        self.categoricals = []
        if probs is None:
            probs = [None] * len(logits)
        elif logits is None:
            logits = [None] * len(probs)
        else:
            raise ValueError('Either probs or logits must be None')

        for sub_probs, sub_logits in zip(probs, logits):
            categorical = distributions.Categorical(probs=sub_probs, logits=sub_logits, validate_args=validate_args)
            self.categoricals.append(categorical) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:14,代碼來源:distribution.py

示例15: _sample_event

# 需要導入模塊: from torch import distributions [as 別名]
# 或者: from torch.distributions import Categorical [as 別名]
def _sample_event(self, output, greedy=True, temperature=1.0):
        if greedy:
            return output.argmax(-1)
        else:
            output = output / temperature
            probs = self.output_fc_activation(output)
            return Categorical(probs).sample() 
開發者ID:djosix,項目名稱:Performance-RNN-PyTorch,代碼行數:9,代碼來源:model.py


注:本文中的torch.distributions.Categorical方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。