當前位置: 首頁>>代碼示例>>Python>>正文


Python distributed.gather方法代碼示例

本文整理匯總了Python中torch.distributed.gather方法的典型用法代碼示例。如果您正苦於以下問題:Python distributed.gather方法的具體用法?Python distributed.gather怎麽用?Python distributed.gather使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.distributed的用法示例。


在下文中一共展示了distributed.gather方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _gather

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _gather(rank, rows, columns):
    dest = 0
    tensor = _get_tensor(rank, rows, columns)
    if rank == dest:
        tensors_list = _get_zeros_tensors_list(rows, columns)
        logger.debug('Rank: {},\nTensor BEFORE gather: {}. tensors_list: {}'.format(
            rank, tensor, tensors_list))
        dist.gather(tensor=tensor, gather_list=tensors_list)
        logger.debug('Rank: {},\nTensor AFTER gather: {}. tensors_list: {}\n'.format(
            rank, tensor, tensors_list))
        for i in range(dist.get_world_size()):
            assert torch.equal(tensors_list[i], _get_tensor(i, rows, columns)), \
                'Rank {}: tensors lists are not the same after gather.'
    else:
        logger.debug('Rank: {},\nTensor BEFORE gather: {}\n'.format(rank, tensor))
        dist.gather(tensor=tensor, dst=dest)
        logger.debug('Rank: {},\nTensor AFTER gather: {}\n'.format(rank, tensor))

    # tensor shouldn't have changed
    assert torch.equal(tensor, _get_tensor(rank, rows, columns)), \
        'Rank {}: Tensor got changed after gather.'.format(rank) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:23,代碼來源:distributed_operations.py

示例2: run

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def run(backend, rank, rows, columns, num_gpus):
    # https://pytorch.org/docs/master/distributed.html
    if backend == 'gloo':
        print('Run operations supported by \'gloo\' backend.')
        _broadcast(rank, rows, columns)
        _all_reduce(rank, rows, columns)
        _barrier(rank)

        # this operation supported only on cpu
        if num_gpus == 0:
            _send_recv(rank, rows, columns)
    elif backend == 'nccl':
        print('Run operations supported by \'nccl\' backend.')
        # Note: nccl does not support gather or scatter as well:
        # https://github.com/pytorch/pytorch/blob/v0.4.0/torch/lib/THD/base/data_channels/DataChannelNccl.cpp
        _broadcast(rank, rows, columns)
        _all_reduce(rank, rows, columns)
        _reduce(rank, rows, columns)
        _all_gather(rank, rows, columns) 
開發者ID:aws,項目名稱:sagemaker-pytorch-training-toolkit,代碼行數:21,代碼來源:distributed_operations.py

示例3: _serialize_to_tensor

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _serialize_to_tensor(data, group):
    backend = dist.get_backend(group)
    assert backend in ["gloo", "nccl"]
    device = torch.device("cpu" if backend == "gloo" else "cuda")

    buffer = pickle.dumps(data)
    if len(buffer) > 1024 ** 3:
        logger = logging.getLogger(__name__)
        logger.warning(
            "Rank {} trying to all-gather {:.2f} GB of data on device {}".format(
                get_rank(), len(buffer) / (1024 ** 3), device
            )
        )
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device=device)
    return tensor 
開發者ID:JDAI-CV,項目名稱:fast-reid,代碼行數:18,代碼來源:comm.py

示例4: _pad_to_largest_tensor

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _pad_to_largest_tensor(tensor, group):
    """
    Returns:
        list[int]: size of the tensor, on each rank
        Tensor: padded tensor that has the max size
    """
    world_size = dist.get_world_size(group=group)
    assert (
            world_size >= 1
    ), "comm.gather/all_gather must be called from ranks within the given group!"
    local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device)
    size_list = [
        torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size)
    ]
    dist.all_gather(size_list, local_size, group=group)
    size_list = [int(size.item()) for size in size_list]

    max_size = max(size_list)

    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    if local_size != max_size:
        padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device)
        tensor = torch.cat((tensor, padding), dim=0)
    return size_list, tensor 
開發者ID:JDAI-CV,項目名稱:fast-reid,代碼行數:27,代碼來源:comm.py

示例5: _pad_to_largest_tensor

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _pad_to_largest_tensor(tensor, group):
    """
    Returns:
        list[int]: size of the tensor, on each rank
        Tensor: padded tensor that has the max size
    """
    world_size = dist.get_world_size(group=group)
    assert (
        world_size >= 1
    ), "comm.gather/all_gather must be called from ranks within the given group!"
    local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device)
    size_list = [
        torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size)
    ]
    dist.all_gather(size_list, local_size, group=group)
    size_list = [int(size.item()) for size in size_list]

    max_size = max(size_list)

    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    if local_size != max_size:
        padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device)
        tensor = torch.cat((tensor, padding), dim=0)
    return size_list, tensor 
開發者ID:facebookresearch,項目名稱:detectron2,代碼行數:27,代碼來源:comm.py

示例6: gather

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def gather(self, tensor, dst):
        """Gathers a list of tensors in a single party."""
        assert dist.is_initialized(), "initialize the communicator first"
        if self.get_rank() == dst:
            result = []
            for _ in range(self.get_world_size()):
                result.append(torch.empty(size=tensor.size(), dtype=torch.long))
            dist.gather(tensor, result, dst, group=self.main_group)
            return result
        dist.gather(tensor, [], dst, group=self.main_group)
        return [None] 
開發者ID:facebookresearch,項目名稱:CrypTen,代碼行數:13,代碼來源:distributed_communicator.py

示例7: gather

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def gather(data, dst=0, group=None):
    """
    Run gather on arbitrary picklable data (not necessarily tensors).
    Args:
        data: any picklable object
        dst (int): destination rank
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.
    Returns:
        list[data]: on dst, a list of data gathered from each rank. Otherwise,
            an empty list.
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    if dist.get_world_size(group=group) == 1:
        return [data]
    rank = dist.get_rank(group=group)

    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)

    # receiving Tensor from all ranks
    if rank == dst:
        max_size = max(size_list)
        tensor_list = [
            torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
        ]
        dist.gather(tensor, tensor_list, dst=dst, group=group)

        data_list = []
        for size, tensor in zip(size_list, tensor_list):
            buffer = tensor.cpu().numpy().tobytes()[:size]
            data_list.append(pickle.loads(buffer))
        return data_list
    else:
        dist.gather(tensor, [], dst=dst, group=group)
        return [] 
開發者ID:JDAI-CV,項目名稱:fast-reid,代碼行數:41,代碼來源:comm.py

示例8: gather

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def gather(data, dst=0, group=None):
    """
    Run gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        dst (int): destination rank
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: on dst, a list of data gathered from each rank. Otherwise,
            an empty list.
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    if dist.get_world_size(group=group) == 1:
        return [data]
    rank = dist.get_rank(group=group)

    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)

    # receiving Tensor from all ranks
    if rank == dst:
        max_size = max(size_list)
        tensor_list = [
            torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
        ]
        dist.gather(tensor, tensor_list, dst=dst, group=group)

        data_list = []
        for size, tensor in zip(size_list, tensor_list):
            buffer = tensor.cpu().numpy().tobytes()[:size]
            data_list.append(pickle.loads(buffer))
        return data_list
    else:
        dist.gather(tensor, [], dst=dst, group=group)
        return [] 
開發者ID:facebookresearch,項目名稱:detectron2,代碼行數:43,代碼來源:comm.py

示例9: _serialize_to_tensor

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _serialize_to_tensor(data, group):
    backend = dist.get_backend(group)
    assert backend in ["gloo", "nccl"]
    device = torch.device("cpu" if backend == "gloo" else "cuda")

    buffer = pickle.dumps(data)
    if len(buffer) > 1024**3:
        logger.warning(
            "Rank {} trying to all-gather {:.2f} GB of data on device {}".
            format(get_rank(),
                   len(buffer) / (1024**3), device))
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device=device)
    return tensor 
開發者ID:MegviiDetection,項目名稱:video_analyst,代碼行數:16,代碼來源:dist_utils.py

示例10: _pad_to_largest_tensor

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def _pad_to_largest_tensor(tensor, group):
    """
    Returns:
        list[int]: size of the tensor, on each rank
        Tensor: padded tensor that has the max size
    """
    world_size = dist.get_world_size(group=group)
    assert (
        world_size >= 1
    ), "comm.gather/all_gather must be called from ranks within the given group!"
    local_size = torch.tensor([tensor.numel()],
                              dtype=torch.int64,
                              device=tensor.device)
    size_list = [
        torch.zeros([1], dtype=torch.int64, device=tensor.device)
        for _ in range(world_size)
    ]
    dist.all_gather(size_list, local_size, group=group)
    size_list = [int(size.item()) for size in size_list]

    max_size = max(size_list)

    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    if local_size != max_size:
        padding = torch.zeros((max_size - local_size, ),
                              dtype=torch.uint8,
                              device=tensor.device)
        tensor = torch.cat((tensor, padding), dim=0)
    return size_list, tensor 
開發者ID:MegviiDetection,項目名稱:video_analyst,代碼行數:32,代碼來源:dist_utils.py

示例11: gather

# 需要導入模塊: from torch import distributed [as 別名]
# 或者: from torch.distributed import gather [as 別名]
def gather(data, dst=0, group=None):
    """
    Run gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        dst (int): destination rank
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: on dst, a list of data gathered from each rank. Otherwise,
            an empty list.
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    if dist.get_world_size(group=group) == 1:
        return [data]
    rank = dist.get_rank(group=group)

    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)

    # receiving Tensor from all ranks
    if rank == dst:
        max_size = max(size_list)
        tensor_list = [
            torch.empty((max_size, ), dtype=torch.uint8, device=tensor.device)
            for _ in size_list
        ]
        dist.gather(tensor, tensor_list, dst=dst, group=group)

        data_list = []
        for size, tensor in zip(size_list, tensor_list):
            buffer = tensor.cpu().numpy().tobytes()[:size]
            data_list.append(pickle.loads(buffer))
        return data_list
    else:
        dist.gather(tensor, [], dst=dst, group=group)
        return [] 
開發者ID:MegviiDetection,項目名稱:video_analyst,代碼行數:44,代碼來源:dist_utils.py


注:本文中的torch.distributed.gather方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。